Report on Preliminary Site Investigation

Bakali Road, Forresters Beach, NSW

80519020-004

Prepared for Wathara NSW Pty Ltd

15 November 2021

Cardno[®]

Contact Information

Document Information

Registered Name	Prepared for	Wathara NSW Pty Ltd
Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035	Project Name	Bakali Road, Forresters Beach, NSW
559 Hunter Street Newcastle West NSW 2302 Australia	File Reference	Report on Preliminary Site Investigation – Bakali Road, Forresters Beach, NSW
www.cardno.com	Job Reference	80519020-004
Phone +61 2 4965 4555	Date	15 November 2021
Fax +61 2 4965 4666	Version Number	1

Author(s):

Kosta Sykiotis	Effective Date	15/11/2021
Geotechnical Engineer		

Date Approved

15/11/2021

Approved By:

Dimce Stojanovski Senior Scientist Ian Piper Technical Services Manager, Geotechncial

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	15/11/2021	First Issue to Client	KS	DS/IGP

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Executive Summary

Cardno (NSW/ACT) Pty Ltd (Cardno) have been engaged by Wathara NSW Pty Ltd (the Client) to prepare a Preliminary Site Investigation (PSI) report for the proposed residential development at Bakali Road, Forresters Beach NSW (the Site). Cardno has previously undertaken investigation and provided commentary on potential contamination at the Site is report titled Urban Capability Assessment – Proposed Residential Development, Bakali Road, Forresters Beach (80514013-002.1)", dated 23rd December 2020 [1].

Due to the extended period of time between the initial UCA and planning approvals, Cardno have been engaged to review the existing findings, comment on current conditions, and provide a standalone PSI consistent with current reporting requirements for phase 1 site assessment [2]. During the elapsed time period, Central Coast Council (CCC) have flagged the presence of additional filling in the southern portion of Lot 522 DP 1077907 and as such, additional inspection and sampling was undertaken and is included as part of this assessment.

The purpose of this PSI is to provide the Client with preliminary advice on the contamination status of the site and subsequent implications for the intended use. The PSI reviews current and historical activities undertaken at the site and provides a preliminary environmental assessment of the potential for soil and/or groundwater contamination to be present on the site. The following tasks formed the scope of works Cardno undertook to complete the PSI:

- > Defining of the Site extents, features and surrounding area;
- > Review of hydrogeology and groundwater resource use;
- > Review of public records on Site history;
- > Site inspection of the site and surrounding land;
- > Review of previous intrusive site investigation, sampling and testing undertaken at the Site as well as additional inspection and sampling in areas of concern; and
- > Preparation of a PSI report to advise on the Site's preliminary contamination status.

As part of the initial investigation, multiple soil samples were subject to laboratory analysis for contamination suites. Following inspection of the additional stockpile flagged within the southern portion of the Site, additional laboratory analysis was undertaken on samples gathered from the stockpile. Contamination testing undertaken comprised; heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn), organochlorine pesticides (OCPs) and organophosphate pesticides (OPPs), Total Recoverable Hydrocarbons (TRH), BTEXN (Benzene, Toluene, Ethyl-benzene, Xylenes and Naphthalene), Polycyclic Aromatic Hydrocarbons (PAH), Volatile Organic Compounds (VOC) and Polychlorinated Biphenyls (PCB).

Results from laboratory testing indicate there were no exceedances of the Health Investigation thresholds (HIL A) for the analytes tested as detailed in NEPM 1999 [3].

Based on the review of the Site history, geotechnical works and Site inspection, Cardno identified no past or current, potentially gross contaminating activities having been undertaken on or adjacent to the Site.

Given the results of this assessment, Cardno recommend the development of an unexpected finds protocol to address isolated stockpiles of fill onsite and any potential contamination uncovered during construction phase. The Site is considered low risk of potential contamination based on the review of Site history, geotechnical works, investigation findings and the identified data gap. Based on the findings of the PSI, Cardno did not identify contamination or potentially contaminating activities previously undertaken on Site that would render the site unsuitable for its proposed use.

[©] Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Table of Contents

1	Introduction		
	1.1	Background	1
	1.2	Purpose and Objectives	1
	1.3	Scope	1
2	Previo	us Investigations	3
	2.1	Urban Capability Assessment	3
3	Site In:	spection and Surrounding Environment	4
	3.1	Site Identification	4
	3.2	Site Use and Infrastructure	4
	3.3	Surrounding Environment and Land uses	6
4	Publisł	hed Data	7
	4.1	Regional Geology	7
	4.2	Acid Sulfate Soils	7
	4.3	Hydrogeology	8
	4.4	EPA Records Search	8
5	Site Hi	istory	9
	5.1	General	9
	5.2	Summary of Site History	13
6	Criteria	a for Contamination Assessment	14
7	Site In	vestigation Methodology	15
	7.1	Fieldwork Scope	15
	7.2	Laboratory Testing	15
	7.3	Sampling Methodology	15
	7.4	Quality Control / Quality Assurance	16
8	Areas	and Contaminates of Potential Concern	17
9	Investi	igation Findings	18
	9.1	Analytical Tables	18
	9.2	Surface and Subsurface Conditions	18
	9.3	Chemical Testing	19
	9.4	Quality Assurance / Quality Control	19
10	Conce	ptual Site Model	21
	10.1	Preliminary Conceptual Model	21
	10.2	Data Gaps	22
11	Conclu	usion	23
12	Standa	ard of Assessment Limitations	24
13	References		

Cardno[®]

Appendices

- Appendix A Figures
- Appendix B Review Data
- Appendix C Test Bore Logs
- Appendix D Laboratory testing
- Appendix E Photographs

Tables

Table 3-1	Site Details	4
Table 3-2	Site features and Observations	4
Table 3-3	Surrounding Land Use	6
Table 4-1	Registered Groundwater Bore Search Summary	8
Table 5-1	Historical Title Deeds	9
Table 5-2	Review of Section 149 Certificates	11
Table 5-3	Aerial Imagery Review	11
Table 7-1	QA Sampling Schedule	16
Table 8-1	Site Activities and Potential Contaminates of Concern	17
Table 9-1	Summary of Analytical Results Quality Assurance Results (mg/kg)	20
Table 10-1	Preliminary Conceptual Site Model	21

Figures

Figure 4-1 Geology Dataset Overlay

1 Introduction

Cardno (NSW/ACT) Pty Ltd (Cardno) were engaged by Wathara NSW Pty Ltd (the Client) to prepare a Preliminary Site Investigation (PSI) report for the proposed residential development at Bakali Road, Forresters Beach NSW. The Site assessment area is shown on Figure 1, attached in Appendix A.

1.1 Background

Based on the supplied plans provided by the Client (attached in Appendix A), the proposed residential development is to comprise to creation of up to 45 residential allotments and the construction of associated infrastructure across three (3) stages.

Cardno have previously prepared an urban capability assessment (UCA) for the Site under cover "Urban Capability Assessment – Proposed Residential Development, Bakali Road, Forresters Beach (80514013-002.1)", dated 23rd December 2020 [1] to assist with subdivision design and form part of the original DA submission. Due to the extended period of time between the initial UCA and planning approvals, Cardno have been engaged to prepare an additional PSI to review the existing findings, comment on current conditions, and provide a standalone PSI consistent with current reporting requirements for phase 1 site assessment [2]. Council have also flagged the presence of additional filling in the southern portion of Lot 522 DP 1077907, as such, additional inspection and sampling was undertaken and is included as part of this assessment.

The current PSI included a site inspection and desktop study of available historical data including a review of the Central Coast Council (CCC) Section 149 Planning Certificates, historical aerial photographs, title deeds and NSW EPA database. The assessment was undertaken with reference to NSW EPA "Consultants reporting on contaminated land Contaminated land guidelines" [2] and *National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 1999* [3].

1.2 Purpose and Objectives

The purpose of this PSI is to provide the Client with preliminary advice on the contamination status of the site and subsequent implications for the intended use. The PSI reviews current and historical activities undertaken at the site and provides a preliminary environmental assessment of the potential for soil and/or groundwater contamination to be present on the site.

The objectives of the PSI are to:

- > To the extent practicable, identify the potential for past or present activities on; and surrounding the site, to have impacted soil or groundwater at the site.
- > Identify potential areas and contaminants of concern at the site.
- > Identify potential receptors of concern and assess the potential for the protected beneficial uses of the land to be impacted due to contamination.
- > To make a preliminary assessment of whether contamination is likely to affect the future use or development of the site.
- > Assess the requirement, if any, for further environmental investigation to assess or make the site suitable for the proposed use.

1.3 Scope

Cardno carried out the following tasks in order to satisfy the purpose and objectives of the PSI assessment.

Defined the Site, Features & Surrounds:

- > Obtained the property title description from a Land-data Property Report.
- > Defined the site boundaries based on title information, available data and established a site base plan.
- > Identified the site features.
- > Defined the topography, surface water drainage of the site and its proximity to the nearest surface water body.

C Cardno

- > Identified the location of nearby sensitive environments and receptors such as residential, child-care and primary schools, wetlands, streams or rivers.
- > Identified the zoning of the site under the local Planning Scheme.
- > Reviewed of previous investigations undertaken within the area.

Hydrogeology & Groundwater Resource Use

> Ascertained the potential utilisation of groundwater at and near the site through a search of the NSW Groundwater Database at NSW Office of Water website.

Review of Public Records on Site History

Reviewed publicly available documents relevant to the site including:

- > The historical chain of land titles.
- > Historical and current maps of the area.
- > Selected historical aerial photos available from the Department of Lands.
- Reviewed the NSW EPA Contaminated Lands Register to identify nearby contaminated sites reported to the NSW EPA under section 60 of the CLM (1997).

Site Inspection & Surrounds

- > Confirmed the site features and identified any visible evidence of fuel storage tanks (above or belowground) and other infrastructure with potential to act as a source of soil and/or groundwater.
- > Confirmed the soil type and looked for evidence of site cutting and filling.
- > Assessed the surrounding area (to a radius of approximately 500 m) for potential sources of contamination of soil or groundwater at the site.

Intrusive Site Investigation Sampling & Testing

- > Performed limited investigations of soil conditions at nine selected locations to a maximum depth of 0.6m.
- Tested selected soil samples for a broad range of analytes (by a National Association of Testing Authorities (NATA) accredited laboratory).

Reporting

- > Prepared a Preliminary Site Investigation (PSI) report to document the assessment activities and results to including findings and recommendations relevant to the objectives of the assessment.
- Developed a Conceptual Site Model (CSM) for the site, identifying complete and potential pathways between known and potential sources and receptors. This CSM is incorporated in this investigation report.

2 **Previous Investigations**

2.1 Urban Capability Assessment

Cardno has previously undertaken an Urban Capability Assessment (UCA) at the Site [1] to assist with subdivision design and provide commentary regarding contamination status of the Site to form part of the original DA submission. The investigation was undertaken on 20th and 21st October 2015 and comprised:

- > Site walkover by an experienced geotechnical engineer to map salient features at the Site;
- > Drilling of 14 test bores by mechanical auger to depths in the order of 2.2 m below ground level (BGL);
- > Dynamic Cone Penetrometer (DCP) testing which was conducted adjacent to test bores;
- > Representative sampling of material encountered at the Site; and
- > Additional assessment of stockpiles at the Site.

The report was preliminary in nature and comprised:

- > Identification of potentially contaminating activities that are currently or had previously been undertaken on site.
- > Identification of potential contaminant concerns.
- > Drilling of test bores to map subsurface strata and collect samples for laboratory testing.
- > Collection of samples for various contamination tests.
- > Production of Preliminary Contamination Assessment.
- > Assessment of need for further contamination specific investigations.

The Cardno Report [1] concluded that the contamination risk across the Site was generally 'low' and is not considered to pose a threat to the proposed residential development. Data from the investigation and subsequent report are included herein where relevant.

3 Site Inspection and Surrounding Environment

3.1 Site Identification

The subject Site details are presented in Table 3-1 below. For Site location, refer to Figure 1 in Appendix A.

Table 3-1 Site Details		
Site Address	Bakali Road, Forresters Beach, NSW	
Lot Number and Deposited Plan Lots 1 to 4 DP1000694 Lot 522 DP1077907 Lot 3 DP101649 Lot 18 DP23283 Lot 51 DP1028301		
Site Area	Approx. 9.8 ha	
Local Government Area	Central Coast Council	
Relative Zoning (Gosford Local Environmental Plan Invalid source specified.)	 Lots 1 to 4 in DP1000694 – DM Deferred Matter Lot 522 in DP1077907 – DM Deferred Matter Lot 3 DP101649 – DM Deferred Matter Lot 18 DP23283 – DM Deferred Matter Lot 51 DP1028301 – DM Deferred Matter 	

3.2 Site Use and Infrastructure

A site inspection was undertaken by a Principal Consultant from Cardno on 14th October 2021 in order to identify and map salient features of the site and the surrounding area. The inspection comprised a walkover assessment. Site features and observations are detailed in Table 3-2 below.

Table 3-2Site features and Observations

Item	Observations
Site use	 The overall developable site was previously utilised as residential and small-scale farming activities.
	 The site contained both unoccupied and occupied residential dwellings.
Weather condition	Sunny.
Site slope and drainage features	 Topographically the site is located within relatively flat to slightly sloping terrain, located within the catchment area of Forresters Creek and Wamberal Lagoon.
	 Slopes within the site generally fall to the west and north-west with gradients less than 3°.
	 A drainage channel falling to the north-west divided the site into two rough sections, the Northern (NP) and Southern Portions (SP).
	 Elevations across the site range from 15 m AHD in the North-eastern corner, 8 m AHD in the north- western corner and 10 m AHD in the south of site.
	 A circular depression in the middle of Lot 4 DP1000694 is expected to be associated with a constructed water catchment.
	 Surface disturbance was also observed within the southern portion of Lot 1 DP 1000694 which is understood to be associated with construction of a farm dam. Based on discussions with the landlord during the inspection of the previous UCA [1], the

Cardno[®]

dam has been disused and filled due to its' inability to retain water. Site surface coverings • Mature vegetation round the creek line and open pasture. Surface soils • Surface soils are predominately natural Sity CLAY/ Sity SAND topsoil and fill materials. Site cut and fill • Indications of earthworks were noted across the site associated with hevelling of previous building platforms. Buildings • Current residential dwelling sacross the Site comprising predominately natural Sity CLAY/ Sity SAND topsoil and fill as CONT in Figure 2 of Appendix A. See Photograph 3 in Appendix E. Potential asbestos in building materials • Scattered fibrous material was noted in footprints of previous structures identified as OIN 5 in Figure 2 of Appendix A. See Photograph 4 of Appendix E. Manufacturing, industrial or chemical processes and infrastructure • Not observed. Presence of stockpiles, fly tipping or anthropogenic materials • Not observed. Presence of stockpiles, fly tipping or anthropogenic materials • Not present. Evidence of previous site contamination investigations • Not observed. Evidence of previous site contamination investigations • Not observed. Evidence of groundwater use • Not observed. Evidence of groundwater contamination investigations • Not observed. Evidence of previous site contamination investigations • Not observed. Evidence of groundwater contamination investigations • Not observed. Evidence of	Item	Observations
Surface soilsSurface soils are predominately natural Silty CLAY / Silty SAND topsoil and fill materials.Site cut and fillIndications of earthworks were noted across the site associated with levelling of previous building platforms.BuildingsCurrent residential dwellings across the Site comprising predominately current brick construction. Abandoned residential dwelling identified as OIN 4 in Figure 2 of Appendix A. See Photograph 3 in 		
Sitty SAND topsoit and fill materials.Site cut and fill- Indications of earthworks were noted across the site associated with levelling of previous building platforms.Buildings- Current residential dwelling identified as OIN 4 in Figure 2 of Appendix A. See Photograph 3 in Appendix E.Potential asbestos in building materials- Scattered fibrous material was noted in footprints of previous structures identified as OIN 5 in Figure 2 of Appendix A. See Photograph 3 in Appendix A. See photograph 4 of Appendix E.Potential asbestos in building materials- Not observed.Fuel storage tanks (USTs/ASTs)- Not observed.Pagenous goods- Not observed.Presence of stockpiles, fly tipping or anthropogenic materials- Multiple stockpiles were noted across the Site identified as OIN 1-2, 6-10 on Figure 2 attached in Appendix E.Liquid waste disposal features- Not observed.Evidence of previous site contamination investigations- Not observed.Evidence of groundwater contamination investigations- Not observed.Evidence of groundwater use- Not observed.Vegetation- Not observed.Stite fencing- Not observed.Itigating or downs)- Not observed.Evidence of previous site contamination investigations- Not observed.Evidence of groundwater use- Not observed.Evidence of groundwater contamination- Not observed.Evidence of revious site contamination- Not observed.Evidence of groundwater contamination- Not observed.Evidence of groundwater contamination- Not observed.<	Site surface coverings	
associated with levelling of previous building platforms.Buildings- Current residential dwellings across the Site comprising predominately current brick construction. - Abandoned residential dwelling identified as OIN 4 in Figure 2 of Appendix A. See Photograph 3 in Appendix E.Potential asbestos in building materials- Scattered fibrous material was noted in footprints of previous structures identified as OIN 5 in Figure 2 of Appendix A. See photograph 4 of Appendix E.Manufacturing, industrial or chemical processes and infrastructure- Not observed.Fuel storage tanks (USTs/ASTs)- Not observed.Dangerous goods- Not observed.Presence of stockpiles, fly tipping or anthropogenic materials- Multiple stockpiles were noted across the Site identified as OIN 1-2, 6-10 on Figure 2 attached in Appendix A. See Photographs 1, 2, 5 and 6 in Appendix E.Liquid waste disposal features- Not present.Evidence of previous site contamination investigations- Not observed.Evidence of groundwater contamination of odours)- Not observed.Evidence of groundwater contamination- Not observed.Evidence of groundwater use- Not observed.Vegetation- Not observed.Vegetation- Open grass pasture and sporadic mature trees across the Site.Site fencing- Timber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.	Surface soils	
comprising predominately current brick construction.Abandoned residential dwelling identified as OIN 4 in Figure 2 of Appendix A. See Photograph 3 in Appendix E.Potential asbestos in building materialsScattered fibrous material was noted in footprints of previous structures identified as OIN 5 in Figure 2 of Appendix A. See photograph 4 of Appendix E.Manufacturing, industrial or chemical processes and infrastructureNot observed.Fuel storage tanks (USTs/ASTs)Not observed.Dangerous goodsNot observed.Presence of stockpiles, fly tipping or anthropogenic materialsMultiple stockpiles were noted across the Site identified as OIN 1-2, 6-10 on Figure 2 attached in Appendix E.Liquid waste disposal featuresNot observed.Evidence of previous site contamination investigationsNot observed.Evidence of groundwater contaminationNot observed.Evidence of groundwater contaminationNot observed.VegetationNot observed.Ste fencingOpen grass pasture and sporadic mature trees across the Site.Site fencingTimber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.	Site cut and fill	associated with levelling of previous building
previous structures identified as OIN 5 in Figure 2 of Appendix A. See photograph 4 of Appendix E.Manufacturing, industrial or chemical processes and infrastructureNot observed.Fuel storage tanks (USTs/ASTs)• Not observed.Dangerous goods• Not observed.Presence of stockpiles, fly tipping or anthropogenic materialsMultiple stockpiles were noted across the Site identified as OIN 1-2, 6-10 on Figure 2 attached in Appendix A. See Photographs 1, 2, 5 and 6 in Appendix E.Liquid waste disposal features• Not observed.Evidence of previous site contamination investigations• Not observed.Evidence of groundwater contamination• Not observed.Groundwater use• Not observed.Vegetation• Not observed.Site fencing• Timber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.	Buildings	 comprising predominately current brick construction. Abandoned residential dwelling identified as OIN 4 in Figure 2 of Appendix A. See Photograph 3 in
infrastructureFuel storage tanks (USTs/ASTs)• Not observed.Dangerous goods• Not observed.Presence of stockpiles, fly tipping or anthropogenic materialsMultiple stockpiles were noted across the Site identified as OIN 1-2, 6-10 on Figure 2 attached in Appendix A. See Photographs 1, 2, 5 and 6 in 	Potential asbestos in building materials	previous structures identified as OIN 5 in Figure 2 of
Dangerous goods• Not observed.Presence of stockpiles, fly tipping or anthropogenic materials• Multiple stockpiles were noted across the Site identified as OIN 1-2, 6-10 on Figure 2 attached in Appendix A. See Photographs 1, 2, 5 and 6 in Appendix E. • Newer stockpile dumping is shown as OIN 10 on Figure 2 attached in Appendix E.Liquid waste disposal features• Not observedEvidence of previous site contamination investigations• Not observedEvidence of groundwater contamination (staining or odours)• Not observed.Evidence of groundwater contamination• Not observed.Groundwater use• Not observed.Vegetation• Not observed.Site fencing• Timber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.		 Not observed.
Presence of stockpiles, fly tipping or anthropogenic materials• Multiple stockpiles were noted across the Site identified as OIN 1-2, 6-10 on Figure 2 attached in Appendix A. See Photographs 1, 2, 5 and 6 in Appendix E. • Newer stockpile dumping is shown as OIN 10 on Figure 2 attached in Appendix E. • Newer stockpile dumping is shown as OIN 10 on Figure 2 attached in Appendix E. • Not present.Liquid waste disposal features• Not present.Evidence of previous site contamination investigations• Not observedEvidence of groundwater contamination (staining or odours)• Not observed.Evidence of groundwater contamination• Not observed.Groundwater use• Not observed.Vegetation• Open grass pasture and sporadic mature trees across the Site. • Cluster of mature trees surround the creek line in the northern portion of the Site.Site fencing• Timber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.	Fuel storage tanks (USTs/ASTs)	Not observed.
materialsidentified as OIN 1-2, 6-10 on Figure 2 attached in Appendix A. See Photographs 1, 2, 5 and 6 in Appendix E.Newer stockpile dumping is shown as OIN 10 on Figure 2 attached in Appendix E.Liquid waste disposal features• Not present.Evidence of previous site contamination investigations• Not observedEvidence of groundwater contamination• Not observed.Evidence of groundwater contamination• Not observed.Groundwater use• Not observed.Vegetation• Open grass pasture and sporadic mature trees across the Site.Site fencing• Timber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.	Dangerous goods	Not observed.
Liquid waste disposal features• Not present.Evidence of previous site contamination investigations• Not observedEvidence of land contamination (staining or odours)• Not observed.Evidence of groundwater contamination• Not observed.Groundwater use• Not observed.Vegetation• Open grass pasture and sporadic mature trees across the Site.Site fencing• Timber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.		 identified as OIN 1-2, 6-10 on Figure 2 attached in Appendix A. See Photographs 1, 2, 5 and 6 in Appendix E. Newer stockpile dumping is shown as OIN 10 on Figure 2 attached in Appendix A, with Photographs 7-
Evidence of previous site contamination investigations• Not observedEvidence of land contamination (staining or odours)• Not observed.Evidence of groundwater contamination• Not observed.Groundwater use• Not observed.Vegetation• Open grass pasture and sporadic mature trees across the Site.Site fencing• Timber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.	Liquid waste disposal features	
Evidence of land contamination (staining or odours)• Not observed.Evidence of groundwater contamination• Not observed.Groundwater use• Not observed.Vegetation• Open grass pasture and sporadic mature trees across the Site.Site fencing• Timber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.		· ·
Evidence of groundwater contamination• Not observed.Groundwater use• Not observed.Vegetation• Open grass pasture and sporadic mature trees across the Site.Vegetation• Cluster of mature tress surround the creek line in the northern portion of the Site.Site fencing• Timber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.	· · · ·	Not observed.
Vegetation • Open grass pasture and sporadic mature trees across the Site. • Cluster of mature tress surround the creek line in the northern portion of the Site. Site fencing • Timber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.	Evidence of groundwater contamination	Not observed.
Vegetation the Site. Cluster of mature tress surround the creek line in the northern portion of the Site. Site fencing Timber and mesh fencing was noted around most properties with the exception of Lot 522 DP1077907.	Groundwater use	Not observed.
properties with the exception of Lot 522 DP1077907.	Vegetation	the Site.Cluster of mature tress surround the creek line in the
Additional Notes and Observations -	Site fencing	
	Additional Notes and Observations	-

3.3 Surrounding Environment and Land uses

The site is located within rural and residential area of Forresters Beach. Land uses around the site are detailed in the Table 3-3 below.

Table 3-3	Surrounding Land Use	
Direction	Land Use or Activity	
North	Existing residential development.	
West	Existing rural development.	
East	 Existing residential development and the Central Coast Highway. 	
South	 Existing residential development and the Central Coast Highway. 	

The area is serviced by public roads and access to the Site is via Bakali Road.

4 Published Data

4.1 Regional Geology

Reference to the New South Wales Seamless Geology dataset [4] indicates the Site is underlain as follows:

- > Northern Portion: Alluvial Valley Deposits (Q_av) known to comprise silt, clay (fluvially deposited) lithic to quartz-lithic sand, and gravel.
- Southern Portion: Patonga Claystone (Tncp) of the Clifton Subgroup and Narrabeen Group, known to comprise red-brown claystone and siltstone, light green grey fine grained sandstone and residual soils derived by the weathering of these rocks.

An overlay of the approximate Site boundary over the geology dataset is shown below in

Figure 4-1 Geology Dataset Overlay

4.2 Acid Sulfate Soils

A review of the Central Coast Council Electronic Mapping System acid sulphate risk maps revealed that the site is situated within an area of no known occurrence of Acid Sulphate soils (ASS).

Further review of Gosford Council Environmental Plan (LEP) 2014 [5] Acid Sulfate Soils Risk Map shows the site is not situated within a classified ASS class.

4.3 Hydrogeology

A search of the NSW Groundwater Database from Department of Primary Industries – Office of Water NSW, found one (1) bore within 500 m of the site. The searches are presented in Appendix B and summarized in **Table 4-1**.

	registered Groundwater B	ore occuron ocum	icity		
Bore ID	Approximate Distance from the site	Intended Purpose	Depth of bore m (BGL)	Standing Water level m (BGL)	Subsurface Profile
GW201938	400m south-east	Domestic	18.0	8.0	Sand and clay to 16.0 followed by shale to depth

Table 4-1 Registered Groundwater Bore Search Summary

Notes:

BGL: Below Ground Level

4.4 EPA Records Search

4.4.1 Contaminated Land Record of Notices

The Contaminated Land Record of Notices is maintained by the Office of Environment and Heritage (OEH) in accordance with Part 5 of the Contaminated Land Management (CLM) Act 1997 and contains regulatory notices issued by the Environment Protection Authority (EPA) in relation to contaminated sites. A search of NSW EPA Record of Notices on 9th November 2021 revealed no notices listed at or within 1 km of the site.

4.4.2 PoEO Public Register

The PoEO Public Register under Section 308 of the Protection of the Environment Operations (PoEO) Act 1997 contains Environment Protection Licences (EPLs), applications and notices issued by the EPA.

The Public Register was searched to identify any issues of relevance to the Site. The search was undertaken on 9th November 2021 with no licensed activities at or within a 1 km radius of the Site.

4.4.3 List of NSW Contaminated Sites Notified to the EPA

A search of the List of NSW Contaminated Sites Notified to the EPA on 9th November 2021 indicated there were no contaminated sites notified to the EPA within a 500 m radius of the Site.

5 Site History

5.1 General

The Site history comprised review of the title deed searches, available published data, Section 10.7 planning certificates and aerial photography review, attached in Appendix B. The site history review is detailed herein.

Historical Title Deeds Search 5.1.1

The title deeds search results for five of the eight allotments were supplied by the client which provided limited information about the history of the Site ownership. Review of the title deeds search results indicated that:

- > Lot 4 DP100694 has been owned by Versatile Living Pty LTd.
- Lot 51 DP 1028301, Lot 3 DP 101649, Lot 522 DP 1077907 and Lot 18 DP 23283 have been owned by > Terrigal Grosvenor Lodge Pty Ltd.

In addition, Legal Liaison Searching Services was engaged by Cardno to undertake a title deed search of the remaining three lots. The search results are contained in Appendix B and are broadly summarised as detailed in Table 5-1.

It is noted that allotment identification numbers have changed for the subjected lots over the years and are detailed in the tables below.

Historical Title Deeds are attached in Appendix B.

able 5-1 Historic	al Title Deeds	
Year	Registered Proprietor(s)	Occupation/Possible Land Use
	rt tinted pink and orange on the attached ed by notification in Government Gazette	copy of DP 1000694 (This part was formerly a road e dated 15/07/1905).
1931	NSW Realty Co Limited	-
1931 – 1936	William Harvey	Retired Manufacturer
1936 – 1941	William Hedley Harvey	Furniture Warehouseman
1941 – 1951	Otto Oscar Groth	Produce Merchant
1951 – 1959	Emma My Jorgensen	Married Women
1959 – 1972	Linda Monica Barrie James Albert Barrie Mervyn Francis Barrie	Widow Motor Mechanic Motor Mechanic
1972	James Albert Barrie Mervyn Francis Barrie	Motor Mechanic Motor Mechanic
1972 - 1973	Kevin Albert Barrie Mervyn Francis Barrie	Motor Mechanic Motor Mechanic
1973 – 1992	K & M Rubie Pty Ltd	-
1992	Robert William Polley Anne Patterson Polley Loui Nicholas Mary Nicholas Luigi Cicco Thomas Hope Murrie Donna Leanne Rush John Lisbona Bellhome Pty Limited	-
1992 – 1999	The Park-Forresters Beach Pty Ltd	-
As regards the part	rk tinted yellow on the attached copy of I	DP 1000694.
1913 – 1920	NSW Realty Co Limited	-

80519020-004 | 15 November 2021 | Commercial in Confidence

Year	Registered Proprietor(s)	Occupation/Possible Land Use		
1920 – 1943	William Julian Hosking	Painter and his deceased estate.		
1943 – 1947	Stanley Robert Dalziell	Turner		
1947 – 1949	Thomas Kenneth Griffiin	Poultry Farmer		
1949 – 1954	Ethel Mary Mullen	Married Woman		
1954 – 1969	Albert Gregory	Poultry Farmer		
1969	Frederick Roy Bononfant	Retired		
1969 – 1974	Keith Edward Jones Breyl May Jones	Butcher Married Woman		
1974 – 1977	Romon (No. 10) Pty Ltd	-		
1977 – 1992	K & M Rubie Pty Ltd	-		
1992	Robert William Polley Anne Patterson Polley Loui Nicholas Mary Nicholas Luigi Cicco Thomas Hope Murrie Donna Leanne Rush John Lisbona Bellhome Pty Limited	-		
1992 – 1999	The Park-Forresters Beach Pty Ltd	-		
Search continued as	regards Lot 1 DP 1000694.			
1999 – Date	Melissa Leigh Hall Damian Bradley James Scott	-		
Search continued as regards Lot 2 DP 1000694.				
1999 – Date	Craig John Horton Trudy Anna Horton	-		
Search continued as regards Lot 3 DP 1000694.				
1999 – 2002	John Stephen Barr Kathryn Jane Barr	-		
2002 – Date	Brendon Robert Briggs Julie Anne Briggs	-		

5.1.2 Central Coast Council Planning Information

Section 149 certificates for the eight allotments forming the proposed development were obtained from CCC during the initial UCA [1]. Review of the planning certificates are summarised in Table 5-2 below.

Identification	Zoning and Land Use	Mine Subsidence within the Meaning of Section 15 of Mine Subsidence Compensation Act 1961	Flood Related Controls	Bushfire Prone Land	Contaminated Land Management Act 1997 Notices Under Section 59 (2)
Lot 522 DP 1077907	 No.7(a) conservation and scenic protection (conservation) 7(c2) conservation and scenic protection (scenic protection-rural small holdings) 	The land has not been proclaimed	No	All parts of the land is shown as bushfire prone on council's records	No
Lot 1 DP 1000694, Lot 2 DP 1000694, Lot 3 DP 1000694, Lot 4 DP 1000694	7(c2) conservation and scenic protection (scenic protection-rural small holdings)	The land has not been proclaimed	No	All parts of the land is shown as bushfire prone on council's records	No
Lot 51 DP 1028301, Lot 51 DP 1028301 and Lot 3 DP 101649	7(c2) conservation and scenic protection (scenic protection-rural small holdings)	The land has not been proclaimed	No	All parts of the land is shown as bushfire prone on council's records	No

Table 5-2 Review of Section 149 Certificates

5.1.3 Review of the Historical Aerial Photos

Cardno has conducted a review of historical aerial photographs or available aerial imagery, current site inspection, previous investigations and knowledge of the area.

A summary of the interpreted site features is detailed in Table 5-3 below and aerial photographs are provided in Appendix B.

Table 5-3	Aerial Imagery Review
-----------	-----------------------

Date	Reference	Observations
1954	Black and White	Onsite:
		 The site is covered with vegetation with the exception of the cleared areas within the north-eastern portion and mid-southern portion of the site.
		 A residential dwelling and associated shed/garage/farm sheds are present within the eastern portion of the NP.
		 Five large structures and a number of smaller structures are present along the eastern boundary of the NP. The structures appear to be associated with farming activities.
		 A number of access tracks are present across the site mainly around the existing structures.
		Offsite:
		 Lands to the north and west of the site are generally undeveloped.
		 Central Coast highway is present following the current alignment.
		 Minor rural developments are present to the east of the Central Coast Highway.

Date	Reference	Observations
1965	Black and White	Onsite:
		Generally consistent with 1954 aerial.
		 Addition of several structures (sheds) at within the SP of the site indicating potentially poultry farming.
		 A large shed is present along the western boundary of SP at approximate location of current Lot 2 DP 1000694.
		 The extent of site vegetation clearing similar to 1954 aerial.
		Off Site:
		 A number of residential dwellings following the current layouts are present along the Central Coast Hwy to the east of the site.
		 Increase in the density of the rural developments to the east of the Central Coast Hwy.
		 Increase in clearing of the lands to the north of the site.
1979	Black and White	On Site:
		 Generally consistent with 1965 aerial.
		 A residential dwelling has been constructed on Lot 3 DP101649 consistent with the location of surface disturbance observed in OI No. 5 in Figure 2 of Appendix A.
		 The majority of the sheds have been removed within the SP with the exception of one long shed and one smaller along the eastern boundary of NP.
		 Appears to be stockpiling in the SP.
		 Fill platform associated with the large shed footprints is apparent along the western boundary of the NP. The location of the shed and filling correlates to OI No.3 in Figure 2 of Appendix A.
		Off Site:
		 Generally consistent with 1965 aerial.
		 Appearance of residential developments to the east of the Central Coast Hwy and north of the site.
		 Increase in the number of residential dwellings along the site eastern boundary adjacent to Central Coast Hwy.
		 Extensive vegetation clearance immediately east of the Central Coast Hwy.
1986	Colour	Onsite:
		 Generally consistent with 1979 aerial.
		 The Conditions within the SP are consistent with 1979 with the exception of extension of cleared land to the north of the SP.
		 The formed drainage channel consistent with the present location is constructed separating NP and SP.
		 The residential dwelling at the north-eastern corner of NP and associated farm shed/garage has been demolished. Two additional residential structures and associated garage are constructed south of the demolished dwelling. The location of one of the dwellings and garage is consistent with OI No.4 in Figure 2 of Appendix A.
		Offsite:
		 Generally consistent with 1976 aerial with an increase in the number of residential developments in the area.
1996	Colour	Onsite:
	Colour	 Conditions are generally consistent with 1986 aerial.
		 The demolition refuse from previous residential dwelling located at the east of the NP has been removed. The NP conditions are similar to 1986 photograph.
		 A larger shed of the two remaining sheds within the SP has been removed (one shed remaining).
		 Residential dwellings have been constructed within Lot 18 DP 23283 and Lot 51 DP 1028301.
		Offsite:
		 Generally consistent with the 1986 aerial.

Date	Reference	Observations
		 A pump station has been constructed to the northwest of the site.
		 Increase in the density of residential developments in the area.
2005	Colour (Google Earth)	 Onsite: The four rural dwellings present at the current site conditions have been constructed. The site manmade structures are consistent with present. The dam within the north-western corner of the SP is present on site. Placement of filling to the east of the Lot 4 DP 1000694 is visible. The location
		of the fill stockpiles are consistent with the OI No. 02 in Figure 2 of Appendix A.The residential dwelling to the west of the OI No. 4 in Figure 2 of Appendix A has been demolished.
		 A number of stockpiles present to the south of the dwelling on the property Lot 1 DP 1000694.
		Offsite:
		 Generally consistent with the 1996 aerial.
2015	Colour (Nearmap)	Onsite:
		 Generally consistent with 2005 aerial.
		 The residential dwelling within the lot 3 DP 1016499 (within the eastern portion of the NP) still present on site. This dwelling did not exist at the time of site investigation and the location correlates with OI No. 5 in Figure 2 of Appendix A.
		 The stockpiles to the south of the dwelling located on Lot 1 DP 1000694 have been removed.
		Offsite:
		 Generally consistent with the 2005 aerial.
2021	Colour (Nearmap)	Onsite:
		 Generally consistent with 2015 aerial, with the addition of dumping in the southern portion of Lot 522 DP 1077907.
		Offsite:
		 Generally consistent with 2015 aerial with the exception of the golf course which has been turned into a residential development.

5.2 Summary of Site History

Based on the review of the available historical aerial photographs, it is understood that the site has generally been used for small scale farming activities with the exception of the several farm sheds constructed within the SP in 50s and 60s with the majority of the sheds removed prior to 1979 photograph. Three residential dwelling were constructed within the north-eastern portion of the NP and have since been demolished.

6 Criteria for Contamination Assessment

The assessment criteria used in NSW to evaluate soil analytical results are based on the National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 1999 [3]. Table 5A of Schedule B (1) Guideline on Investigation Levels for Soil and Groundwater (NEPM 1999) provides default Tier I screening criteria contaminants of concern based on human health and generalised exposure scenarios.

Based on the proposed use of the Site, the following criteria have been adopted:

- > Health Investigation Levels (HIL's) "residential with garden/accessible soil" (HIL A);
- > Soil Health Screening Levels (HSL) for vapour intrusion recommended for residential (HSL A);
- Ecological Screening Levels (ESLs) for TPH fractions F1-F4, BTEX and Benzo(a)Pyrene in soil for Urban residential and public open space; and
- Ecological Investigation Levels (EILs) for Urban residential and public open space limits. The thresholds adopted include conservative added contaminant limit (ACL) values from Table 1B (1) to 1B (3) NEPM based on pH results of the site soils ranging between 5.8 6.5 and in the absence of CEC and/or % clay content testing.

"Investigation levels" or "screening levels" presented in the NEPM are not intended to be interpreted as "maximum permissible levels", "clean up levels" or "safe levels", rather, they are levels at which further investigation or assessment should be undertaken to provide assurance that unacceptable contamination does not occur to an extent that could cause harm or detriment for users of the land. Subsequent assessment on a site-specific basis often results in higher levels being acceptable. However, since the "investigation levels" or "screening levels" are generally set at conservatively low levels, they are often taken to be the acceptable levels.

Stockpiled materials of filling identified during the site inspection and sampling were predominantly comprised of Silty CLAY, Silty/Gravelly SAND, Sandy SILT. Based on the observed soil type, the ESL's and HIL's for sand, silt and clay soils have been considered. Sandy soils have been adopted, as NEPM stipulates a conservative approach for determination of observed soil type to be assessed.

In addition to the dumped fill stockpile materials, piles of general waste comprising bottles, plastic bags and PVC piping were noted around existing stockpiles.

7 Site Investigation Methodology

7.1 Fieldwork Scope

7.1.1 Previous Fieldwork

Fieldwork was undertaken on 20th and 21st of October 2015 for the UCA [1]. The investigation comprised: Site walkover by an experienced geotechnical engineer to map salient site features;

- > Drilling of fourteen test bores (TB001 to TB014) by mechanical auger mounted to a 5 tonne excavator to target depth of 2.2m BGL using a solid flight auger.
- > Engineering assessment and logging of the subsurface profiles encountered by a senior geotechnical engineer from Cardno.
- Sampling of material considered representative of subsurface profile encountered across the site for the purpose of laboratory assessment.
- > Backfilling of the holes with excavation spoil materials.

Borehole locations are attached on Site Plan in Appendix A with borehole logs attached in Appendix C.

7.1.2 Supplementary Fieldwork

Supplementary fieldwork was undertaken comprising a site inspection following the initial UCA investigation due to the extended period between DA approvals. The inspection was undertaken on the southern portion of Lot 522 DP1077907 by a geotechnical principal on 14th October 2021 assess the site for potential changes from the UCA [1]. Additional soil sampling was undertaken to assess the contamination status of the stockpile.

7.2 Laboratory Testing

7.2.1 Previous Laboratory Testing

Laboratory testing undertaken on selected samples recovered during the initial UCA [1] fieldwork comprised:

- > Ten (10) soil contamination tests (including duplicate and triplicate QA samples). The samples were analysed for eight metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn), organochlorine pesticides (OCPs) and organophosphate pesticides (OPPs), Total Recoverable Hydrocarbons (TRH), BTEXN (Benzene, Toluene, Ethyl-benzene, Xylenes and Naphthalene), Polycyclic Aromatic Hydrocarbons (PAH), Volatile Organic Compounds (VOC) and Polychlorinated Biphenyls (PCB).
- > One (1) asbestos ID and one (1) asbestos fibre detections.

7.2.2 Subsequent Laboratory Testing

Additional sampling was undertaken during the subsequent inspection on the 14th October 2021 on the stockpile noted at the site following the inspection. Laboratory testing comprised:

> Four (4) soil contamination tests (including one duplicate QA sample). The samples were analysed for eight metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn), organochlorine pesticides (OCPs) and organophosphate pesticides (OPPs), Total Recoverable Hydrocarbons (TRH), BTEX (Benzene, Toluene, Ethyl-benzene, Xylenes and Naphthalene), Polycyclic Aromatic Hydrocarbons (PAH), and Polychlorinated Biphenyls (PCB).

Laboratory analysis and testing was carried out on soil samples by NATA accredited laboratories.

Results of laboratory testing are in the laboratory reports attached in Appendix D.

7.3 Sampling Methodology

Environmental sampling was performed according to Cardno standard operating procedures with sampling data recorded on Chain of Custody sheets. Eight discrete soil samples from targeted locations were collected at variable depths across the site along with QA laboratory duplicate and triplicate samples. In addition, laboratory prepared trip blank and trip spike samples were hold accompanying the field samples during the investigation. The methodology utilised is as follows:

- > The use and changing of disposable gloves between each sampling event to prevent cross contamination;
- > A Photo Ionisation Detector (PID) was used to screen each sample gathered from the UCA investigation with the readings recorded on engineering logs;
- Decontamination of all sampling equipment using a 3% solution of phosphate free detergent (Decon 90) and tap water prior to each pit/bore;
- > Soil sample storage for all sampling events was via appropriate containers supplied by laboratories;
- Sufficient samples with zero headspace into laboratory prepared sampling jars with the sample details added to the label on the jar.
- > Collection of a blind duplicate sample for quality assurance and control (QA/QC) at a rate of 1 per 20 samples collected.
- > Samples were sent to the laboratory within recommended holding times.
- The sample jars were preserved in a chilled esky containing ice immediately after sampling and during transport to the laboratories. The laboratory chain of custody documentation was completed and accompanied the samples during shipment.

The majority of the samples were collected at the intrusive testing locations with the sample IDs representing the test pit locations. A plan showing the location of each environmental sample is attached as Figure 1 in Appendix A.

7.4 Quality Control / Quality Assurance

A critical aspect of site investigation is the demonstration of the quality of the data used as the basis for the assessment. This is achieved through a Data Validation process, which includes a review of the following aspects of the data collection process:

- > Project Quality Objectives and Plans.
- > Data Representativeness.
- > Data Precision and Accuracy.
- > Laboratory Performance.
- > Data Comparability.
- > Data Set Completeness.

Primary and QA samples were sent to NATA accredited laboratories for analysis and are identified in the table below.

Table 7-1	QA Sampling Schedule
-----------	----------------------

Primary Sample ID	Duplicate ID	Triplicate ID
TB009-1	QA1	QA2
ES3	DUP1	-

Laboratory replicates are generated by subjecting a separate aliquot of sample through the same preparation and analysis procedures as the primary sample. Comparison of the primary sample to the duplicate and triplicate sample will yield a precision measurement (expressed as RPD) in a given matrix.

The laboratory acceptance criteria for duplicate samples are as follows:

- > Results less than 5 times LOR preclude acceptance criteria for RPD; and,
- > If results are greater than 5 times the PQL, an RPD of 0-50% is acceptable.

8 Areas and Contaminates of Potential Concern

The assessment has identified several potential sources of contamination (and related Contaminants of Potential Concern – COPC), which are summarised in the Table 8-1 below.

Observation Identification Number (OIN) ⁽¹⁾	Site Activity / Potential Source	Contaminates of Potential Concern (CoPC)	Comments
OIN 3	 Potential cut and fill operations for levelling. 	 8 Heavy Metals PAH, TRH BTEXN OCP/OPP Asbestos 	 Uncontrolled fill material noted most likely associated with levelling with building footprints. Potential imported fill.
-	Farming UseInstallation of service utility	8 Heavy MetalsPAH,TRH BTEXN	 Potential machinery use on Site.
OIN 4 & 5	 Potential hazardous building materials and storage of chemicals 	 ACM (asbestos containing materials) and lead paint. Potential storage of pesticides, chemicals & fuels. metals 	 Age of the structures indicate that ACM may have been used in construction materials.
-	 Farming activities 	 OCP/OPP and metals 	 Potential use of pesticides.
OIN 7 & 9	 Existing Land Use 	Aesthetic	 Household refuse and dumping of garden waste along the boundary of the site with existing residential developments along Central Coast Hwy.
			 Household refuse items along the drainage channel such as bicycle and bike rim and tyre.
OIN 1, 2, 6, 8, 10	 Potential imported fill Dumped 	 Metals, PAH, TRH, BTEXN OCD/ODD 	 Stockpiles of unknown material noted onsite. Additional stockpiles noted
	Material	 Anthropogenic materials 	in the southern portion of Lot 522 DP1077907.
	Identification Number OIN 3 OIN 4 & 5 OIN 4 & 5 OIN 7 & 9 OIN 1, 2, 6,	Identification Number (OIN 3Potential SourceOIN 3•Potential cut and fill operations for levelling•Farming Use •-•Farming Use •OIN 4 & 5•Potential hazardous building materials and storage of chemicalsOIN 7 & 9•Existing Land UseOIN 1, 2, 6, 8, 10•Potential imported fill •	Identification Number (OIN) (1)Potential SourcePotential Concern (CoPC)OIN 3•Potential cut and fill operations for levelling.•8 Heavy Metals ••Parming Use ••8 Heavy Metals •••Farming Use ••8 Heavy Metals •••Farming Use ••8 Heavy Metals •••Farming Use ••8 Heavy Metals •••Farming Use ••8 Heavy Metals •••Potential hazardous building materials and storage of chemicals•ACM (asbestos containing materials) and lead paint.•Potential hazardous building materials and storage of chemicals•ACM (asbestos containing materials) and lead paint.•Farming activities•OCP/OPP and metals•Farming activities•OCP/OPP and metalsOIN 7 & 9•Existing Land Use•AestheticOIN 1, 2, 6, 8, 10•Potential imported fill ••Metals, ••Dumped Material•Metals, ••PAH, TRH, BTEXN •

 Table 8-1
 Site Activities and Potential Contaminates of Concern

Notes:

1. Observation location shown on Figure 2 in Appendix A.

9 Investigation Findings

9.1 Analytical Tables

Chemical testing was carried out on soil samples by a National Association of Testing Authorities, Australia (NATA) accredited laboratory.

All testing was undertaken within the terms of their accreditation. Copies of the laboratory analytical reports are shown in Appendix D. The results of laboratory analysis for inorganic and organic contaminants in the soil samples are summarised in the analytical comparison tables attached in Appendix D.

9.2 Surface and Subsurface Conditions

The subsurface conditions encountered within the test bores during the UCA [1] are detailed on the attached test bore/pit logs attached in Appendix C together with explanatory notes. Test bore and sample locations are shown on Figure 1 in Appendix A.

The subsurface profile encountered within the test bores generally comprised of the following:

UNIT T - TOPSOIL

- > Generally comprising Silty SAND, encountered from the surface to 0.2 m BGL.
- > Topsoil was also encountered below site filling at TB009 and TB011 at 0.25-0.8 m BGL.
- > Topsoils were generally dry to moist.

UNIT F – FILL

- Filling generally comprised Silty CLAY, Gravelly SAND and Silty SAND, encountered in TB003, TB005, and TB009 at depths ranging from 0-0.5 m BGL. Filling was noted as dry to moist at the time of investigation.
- > Deeper filling was observed in TB005 where drilling was targeted within an identified fill platform (OI No.02 Table 3-1.
- > Filling was generally associated with levelling works for building pads with isolated stockpiles noted onsite.

UNIT A – ALLUVIUM

> Alluvium soils generally comprised Silty CLAY, Sandy/Clayey SILT, and Silty SAND in all test bores at depths ranging from 0.1-0.8 m BGL. Clays were generally of stiff consistency with medium dense sands encountered in TP008. Alluvium soils were moist at the time of investigation.

UNIT R – RESIDUAL

Residual soils generally comprising Silty CLAY encountered in all test bores at depths from 0.2->2.2 m BGL. Residual clays ranged from firm to hard with moisture ranging from above to below standard optimum moisture content.

UNIT EWM - EXTREMELY WEATEHRED MATERIAL

Extremely weathered SILTSTONE was encountered in TB007 and TB010 drilled along the eastern boundary of the Site, encountered from 1.9 m to investigation limits of 2.2 m BGL. No drill bit refusal was encountered during the investigation. Siltstone was noted to be of extremely low strength and extremely weathered.

Slight seepage was encountered at TB003 drilled within the vicinity of the formed drainage channel with no seepage of groundwater encountered within the remaining test bores. The groundwater table is expected to follow the are topography and flow north/north-westerly towards the lower lying areas and Forresters Creek catchment areas, it should be noted that groundwater levels are likely to fluctuate with variations in climatic and site conditions.

For details of the subsurface conditions encountered, reference should be made to the engineering logs of test bores attached in Appendix C, together with explanatory notes.

9.3 Chemical Testing

A summary of the chemical testing undertaken is provided below.

9.3.1 Heavy Metals

Appraisal of the results indicates that concentrations of metals within the samples tested were below the thresholds for Residential A Health guidelines (HIL A) as detailed in National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 1999 [3].

Minor exceedances of the Ecological Investigation Limits (EIL) for Urban Residential/Public Open Space thresholds were noted within the surficial fill/topsoil medium for Zinc. The EIL criteria adopted are notoriously conservative with all values below 250% of the adopted criteria. This coupled with the observation that the area in the test bore sampling locations was supporting verdant pasture, it is considered that the measured levels are not detrimental to flora and fauna, and are potentially reflective of background levels.

9.3.2 Total Recoverable Hydrocarbons (TRH)

Results for TRH's were below the threshold limits as detailed in the National Environment Protection Measure for the Assessment of Site Contamination, 1999 [3] for Urban Residential landuse, Public Open Space Land-Use (HSL A &B) and (ESLs).

9.3.3 Benzene Toluene Ethylbenzene Xylenes and Naphthalene (BTEXN)

All results for BTEXN were below the Limit of Reporting (LOR) concentrations for each sample and all samples were below the threshold limits as detailed in the National Environment Protection Measure for the Assessment of Site Contamination, 1999 [3] for Urban Residential landuse, Public Open Space Land-Use (HSL A &B) and (ESLs).

9.3.4 Polycyclic Aromatic Hydrocarbon (PAH)

Results for PAH's were below the LOR for each sample and below the threshold limits as detailed in the National Environment Protection Measure for the Assessment of Site Contamination, 1999 [3] for Urban Residential landuse, Public Open Space Land-Use (HSL A &B) and (ESLs).

9.3.5 Organophosphorus & Organochlorine Pesticides (OPP/OCP) & Polychlorinated Biphenyls (PCB)

Results for OPP/OCC and PCB were below the threshold limits as detailed in the National Environment Protection Measure for the Assessment of Site Contamination, 1999 [3] for Urban Residential landuse, Public Open Space Land-Use (HSL A &B) and (ESLs).

9.3.6 Asbestos

The result of analysis for sample AS-1 obtained from the fibrous material used in the Cementous sheets used in the abandoned residential dwelling and adjacent shed/garage (OI No. 4Table 3-1) for asbestos ID was positive and indicated that the sample contains Chrysotile Asbestos.

The sample obtained from the disturbed areas at the location the former residential structure (AS-2) was tested for detection of Fibrous asbestos (FA) and asbestos fines (AF) and asbestos containing material (ACM). The analysis results indicated that the sample did not contain ACM fragments but contained 0.001 %w/w of AF/FA (<7mm).

9.4 Quality Assurance / Quality Control

A duplicate sample QA1 and triplicate sample QA2 were prepared from TB009-1 with the analysis of TPH, BTEX, PAH, OC, OP and 8 heavy metals undertaken on the both quality assurance samples. The duplicate sample were analysed by SGS environmental and the QA2 triplicate sample sent to Envirolab laboratories. Additional QA sampling was undertaken in the latest inspection with duplicate of ES3 taken, labelled Dup1.

$$RPD\% = \frac{[Cp - Cd]}{Cp + Cd} \times 200$$

Where:

Cp = Primary Sample Cd = QA Sample

Results of the RPD calculations	are shown in Table 9-1 below.
---------------------------------	-------------------------------

		, ()		
Analyte	RPD (%)			
Analyte	QA1 & TB009-1	QA2 & TB009-1	QA1 & QA2	ES3 & Dup1
Arsenic	0	29 ⁽¹⁾	29 ⁽¹⁾	64
Cadmium	0	29 ⁽¹⁾	29 ⁽¹⁾	ND
Chromium	3	23	26	55
Copper	6	40	46	13
Lead	0	0	0	55
Mercury	0	164 ⁽¹⁾	164 ⁽¹⁾	ND
Nickel	0	22 ⁽¹⁾	22 ⁽¹⁾	ND
Zinc	0	2	2	27
TPH, BTEX, PAH, OCP, OPP & PCB	ND	ND	ND	ND
рН	-	-	-	6
EC	-	-	-	4

Table 9-1 Summary of Analytical Results Quality Assurance Results (mg/kg)

Notes:

ND: Not Detected (Under Limit of Reporting)

1. Disagreement in results due to different limit of reporting.

The Relative Percentage of Difference (RPD) values between the primary and duplicate samples laboratory analysis results were calculated. According to Table 9-1, a maximum RPD value of 64% was calculated based on the obtained results for heavy metals. RPD value of 164% has been calculated for Mercury as the two laboratories have different Limit of Reporting (LOR) for this analysis. It should be noted elevated PRD values are common where concentrations of analytes are close to the detection limit. The RPD values for TPH, BTEX, PAH, OC and OP could not be calculated as the concentrations were below the laboratory limits of reporting.

All RPD values were generally within the acceptance criteria. The chosen analytical laboratory undertook internal QA/QC procedures, which include the analysis of method blanks, internal duplicate samples, laboratory control samples, matrix spikes and surrogate recovery. Additional laboratory QA/QC procedures include sample receipt, logging, storage, preservation and analysis within the method specified holding time.

It was considered that the field and laboratory QA/QC criteria were within acceptable limits indicating field sampling, storage, handling and decontamination procedures and laboratory preparation and analysis procedures were adequate for the purposes of the environmental investigation. Therefore, the data set used as the basis for the soil assessment is considered valid and complete.

10 Conceptual Site Model

10.1 Preliminary Conceptual Model

Generally, a conceptual site model (CSM) provides an assessment of the fate and transport of COPCs relative to site-specific subsurface conditions with regard to their potential risk to human health and the environment. The CSM considers site-specific factors including:

- > Source(s) of contamination;
- > Identification of contaminants of potential concern (COPCs) associated with past (and present) source(s);
- > Vertical, lateral and temporal distribution of COPCs;
- > Site specific lithological information including soil type(s), depth to groundwater, effective porosity, and groundwater flow velocity; and
- > Actual or potential receptors considering both current and future land use for both the site and adjacent properties, and any sensitive ecological receptors.

Based on the information sourced in this report, a preliminary CSM has been developed and is outlined in **Table 10-1** below. Additional details are included in the sections that follow as necessary.

Conceptual Site Model Element	Description
Site History	 Rural residential development with potential farming activities.
Site Current and Future Use	Existing residential land use.Proposed to be developed into a residential development.
Site Geology	 Intrusive investigation was undertaken as part of the UCA [1]. Based on Site conditions, published data and previous geotechnical investigations, the subsurface conditions can be generally summarised as natural with components of isolated filling throughout the sites, typically comprising sand and clay materials.
Site Hydrogeology	 Slight seepage was encountered at TB003 drilled within the vicinity of the formed drainage channel with no seepage of groundwater encountered within the remaining test bores.
Contaminates of Potential Concern (POPC) - Onsite	 Isolated filling and asbestos containing materials associated with demolition activities.
Media Potentially Impacted	No impacted media identified.
Potential Human Receptors	 Site users / workers / employees (onsite) Site Construction workers (onsite) Local residents and surrounding properties (offsite)
Potential Environmental Receptors	Flora and fauna.Surrounding soils.
Potential Exposure Pathways	 Air – inhalation of dusts. Soil – dermal / direct contact. Lateral migration via surficial runoff

 Table 10-1
 Preliminary Conceptual Site Model

10.2 Data Gaps

Based on the inspection, the potential for contamination at this site is not considered to present a significant constraint on the proposed redevelopment of subject site. However, it must be appreciated that assessment was limited to accessible soils (test bore locations) during geotechnical investigation within the subject Site and limited intrusive sampling or laboratory analysis was undertaken.

The following data gaps and uncertainties regarding the assessment are detailed below:

- > Limited intrusive sampling spatially and vertically.
- > No groundwater samples collected however; groundwater contamination is considered unlikely.
- > No dangerous goods search was undertaken for the site.

11 Conclusion

Cardno has completed a Preliminary Site Investigation of the proposed Bakali Road, Forresters Beach subdivision. The objectives of the investigation were to assess:

- > The potential for the past and present activities undertaken on and adjacent to the site to have affected soil at the Site.
- > The need for any further assessment or remedial works before definitive conclusions could be made on the suitably of the site for use.

Results from laboratory testing indicate there were no exceedances of the Health Investigation thresholds (HIL A) for the analytes tested as detailed in NEPM 1999 [3].

Minor exceedances of the Ecological Investigation (EIL) thresholds were noted within the topsoil/fill medium. Given the area in the sampling locations was supporting verdant pasture, it is considered that the measured levels are not detrimental to flora and fauna, and are potentially reflective of background levels. Based on this, the EIL exceedances would not warrant any further investigation or remediation.

Site inspections have identified potentially asbestos containing material (ACM) within footprints of previous structures. Appropriate demolition practices will need to be enacted by the demolition contractor so that the materials are removed in accordance with work cover practices.

Based on the review of the Site history, geotechnical works and Site inspection, Cardno identified no past or current, potentially gross contaminating activities having been undertaken on or adjacent to the Site.

Given the results of this assessment, Cardno recommends the following:

- > An unexpected finds protocol should be developed to address any potential contamination during construction phase.
 - If potential contamination is encountered, Site works will be ceased and suitable environmental consultant will be engaged for assessment.

The Site is considered low risk of potential contamination based on the review of Site history, geotechnical works, investigation findings and the identified data gap.

In accordance with the State Environmental Planning Policy No 55 - Remediation of Land (SEPP 55) [6], which requires the planning authority to consider whether the Site is suitable for the proposed usage prior to approving and determining a development application, Cardno has undertaken a Preliminary Site Investigation (PSI). Based on the findings of the PSI, Cardno did not identify contamination or potentially contaminating activities previously undertaken on Site that would render the site unsuitable for its proposed use.

12 Standard of Assessment Limitations

This investigation has been undertaken in general accordance with the current "industry standards" for a site investigation for the purpose, objectives and scope identified in this report. These standards are set out in:

- National Environment Protection Council (NEPC) (1999) National Environment Protection (Assessment of Site Contamination) Measure, as amended (registered on 15 May 2013) [3]. This is referred to from here on as "the NEPM" or "NEPM".
- Standards Australia (2005) AS4482.1- 2005: Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds. [7].
- > NSW EPA "Guidelines for Consultants Reporting on Contaminated Sites" [8].

The agreed scope of this investigation has been limited for the current purposes of the Client. The investigation may not identify contamination occurring in all areas of the site, or occurring after sampling was conducted. Subsurface conditions may vary considerably away from the sample locations where information has been obtained.

This site investigation report is not any of the following:

- > An Environmental Audit Report as defined under NSW Site Auditor Scheme [9].
- > A detailed site investigation (DSI) report sufficient for an Environmental Auditor to be able to conclude a statutory or non-statutory environmental audit.
- > A geotechnical report, and the bore logs or test pit logs may not be sufficient as the basis for geotechnical advice.
- > A detailed hydrogeological assessment or an assessment of groundwater contaminants potentially arising from other sites or sources nearby.
- > A waste classification report of soil analytical results from the Site.

13 References

- [1] Cardno (NSW/ACT) Pty Ltd, "Urban Capability Assessment Proposed Residential Development, Bakali Road, Forresters Beach (80514013-002.1)," December 2020.
- [2] NSW EPA, "Consultants reporting on contaminated land guidelines"," NSW Environmental Protection Authority, 2020.
- [3] National Environment Protection (Assessment of Site Contamination) Measure 1999, "Schedule B1 Guidelines on Investigation Levels For Soil and Groundwater," National Environment Protection Council (NEPC), 16 May 2013.
- [4] NSW Department of Planning, Industry & Environment, "MinView," 2019. [Online]. Available: https://minview.geoscience.nsw.gov.au/. [Accessed August 2020].
- [5] NSW Government, "Lake Macquarie Local Environmental Plan Acid Sulfate Soils Risk map," 2014.
- [6] NSW Government, "State Environmental Planning Policy No 55 Remediation of Land (SEPP 55)," 1998.
- [7] Standards Australia, "Australian Standard Guide to the investigation and sampling of sites with potentially contamainted soils Part one: Non-volatile and semi-volatile compounds," Standards Australia, 2005.
- [8] NSW EPA, ""Contaminated Sites: Guidelines for Consults on Contaminated Sites," NSW Environmental Protection Authority, 1997.
- [9] NSW DEC, "Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (3rd Edition)," Department of Environment and Conservation NSW, 2017.
- [10] Cardno (NSW/ACT) Pty Ltd, "Preliminary Site Investigation Review Bakali Road, Forresters Beach (80519020-003.1," July 2021.

APPENDIX

FIGURES

© Cardno Limited All Rights Reserved. This document is produced by Cardno Limited	awn Date Client Wathara NSW Pty Ltd ecked Date Project Preliminary Site Investigation	

© Cardno Limited All Rights Reserved. This document is produced by Cardno Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Cardno Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

XREF's: CAD File:

rawings\81022044 - Site Plans.dwg					
ach PP PSI_Data-In\D	© Cardno Limited All Rights Reserved.		Drawn Date KS 12/11/2021		
044_Forresters Be	This document is produced by Cardno Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Cardno Limited does not and shall not assume any	Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035	Designed Date	Residential Subdivision Bakali Road, Forresters Beach NSW	Status FOR INFORMATION ONLY NOT TO BE USED FOR CONSTRUCTION PURPOSES Project Number Scale
N:/FY22	responsibility or liability whatsoever to any third	Unit 1, 10 Denney Street Broadmeadow, NSW 2292	Approved	Title Preliminary Site Investigation	81022044 1:1750 A3 Figure Number Revision

© Cardno Limited All Rights Reserved.		Drawn KS	12/11/2021	Wathara NSW Pty Ltd			
This document is produced by Cardno Limited solely for the benefit of and use by the client in	Shaping the Future Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035 Unit 1, 10 Denney Street Broadmeadow, NSW 2292	Checked IGP Designed	Date 12/11/2021 Date	^t Preliminary Site Investigation Residential Subdivision	Status FOR INFORI NOT TO BE USED FOR C Project Number		Y
accordance with the terms of the retainer. Cardno Limited does not and shall not assume any Unit 1, 10 Denney Street		Verified	Date	Bakali Road, Forresters Beach NSW		Scale Size	ze
		Approved	Preliminary Site Investigation Observation Identification Plan	81022044 1:1750 Figure Number	A3 Revision		
					Figure	2	A

APPENDIX

REVIEW DATA

GROUNDWATER DATA
NSW Office of Water Work Summary

GW202283

Licence: 20BL172870 Licence Status: ACTIVE Authorised Purpose(s): MONITORING BORE Intended Purpose(s): MONITORING BORE Work Type: Bore Work Status: Equipped Construct.Method: Owner Type: Local Govt Commenced Date: Final Depth: 8.00 m Completion Date: 25/06/2012 Drilled Depth: 10.50 m Contractor Name: NEALINGS DRILLING Driller: Unkown Unknown **Assistant Driller:** Property: N A 140 BELLEVUE ROAD TUMBI UMBI Standing Water Level: 6.000 2261 NSW GWMA: Salinity: GW Zone: Yield: Site Details Site Chosen By: Parish Cadastre County Form A: NORTH NORTH.31 11A//8857 Licensed: Region: 20 - Hunter CMA Map: 9131-2S River Basin: 211 - MACQUARIE - TUGGERAH LAKES Grid Zone: Scale: Area/District:

Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown Northing: 6303332.0 Easting: 356452.0 Latitude: 33°23'59.1"S Longitude: 151°27'23.1"E allwaterdata.water.nsw.gov.au/wgen/users/234161376//gw202283.wsr.htm

GS Map: -

MGA Zone: 0

Coordinate Source: GIS - Geographic Information System

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details
1		Hole	Hole	0.00	10.50	0			(Unknown)
1		Annulus	Concrete	0.00	0.05		50		
1		Annulus	Bentonite	0.05	0.50		50		
1		Annulus	Waterworn/Rounded	0.50	8.00		50		Graded
1		Backfill	Bentonite	8.00	10.50				
1	1	Casing		0.00	8.00	50			Seated
1	1	Opening	Slots	1.00	8.00	50		1	

Water Bearing Zones

rom m)	To (m)	Thickness (m)	WBZ Type	S.W.L. (m)	D.D.L. (m)	Yield (L/s)	Hole Depth	Salinity (mg/L)
							(m)	

Geologists Log

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	7.20	7.20	Fill; Sandy Silt, medium, grey to black, high organic content	Fill	
7.20	10.50		Sandy Clay; medium, subrounded, low plasticity, red mottled white, natural	Sandy Clay	

Remarks

25/06/2012: Form A Remarks:

Nat Carling, 25-June-2012; All details were provided by consultant on logs & location map.

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW201721

Licence: 20BL172870 Licence Status: ACTIVE Authorised Purpose(s): MONITORING BORE Intended Purpose(s): MONITORING BORE Work Type: Bore Work Status: Equipped Construct.Method: Auger - Solid Flight Owner Type: Local Govt **Commenced Date:** Final Depth: 15.00 m Completion Date: 16/04/2009 Drilled Depth: 15.00 m **Contractor Name:** Driller: Unkown Unknown **Assistant Driller:** Property: N A 140 BELLEVUE ROAD TUMBI UMBI Standing Water Level: 9.100 2261 NSW GWMA: Salinity: GW Zone: Yield: Site Details Site Chosen By: Parish Cadastre County Form A: NORTH NORTH.31 11A//8857 Licensed: Region: 20 - Hunter CMA Map: 9131-2S River Basin: 211 - MACQUARIE - TUGGERAH LAKES Grid Zone: Scale: Area/District:

Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown Northing: 6303240.0 Easting: 356411.0 Latitude: 33°24'02.0"S Longitude: 151°27'21.5"E allwaterdata.water.nsw.gov.au/wgen/users/234161376//gw201721.wsr.htm

GS Map: -

MGA Zone: 0

Coordinate Source: GPS - Global Positioning System

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details
1		Hole	Hole	0.00	15.00	100			Auger - Solid Flight
1		Annulus	Drill Cuttings	0.00	11.00	100	50		PL:Poured/Shovelled
1		Annulus	Bentonite	11.00	11.50	100	50		PL:Poured/Shovelled
1		Annulus	Waterworn/Rounded	11.50	15.00	100	50		Graded, PL:Poured/Shovelled
1	1	Casing		0.00	15.00	50			Seated on Bottom
1	1	Opening	Slots	12.00	15.00	50		1	()

Water Bearing Zones

From	To	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
. ,	`	. ,		. ,	. ,	. ,	(m)	. ,	

Geologists Log

Drillers Log

From			Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	1.00		Fill; brown, sandy topsoil, with rock fragments (200mm)	Fill	
1.00	2.25	1.25	Silty Clay; red/light grey	Silty Clay	
2.25	5.25	3.00	Silty Clay; red/light grey, increasing moisture	Silty Clay	
5.25	7.25	2.00	Silty Clay; light grey, with ironstone fragments	Silty Clay	
7.25	8.25	1.00	Silty Clay; red/light grey, slightly increasing moisture	Silty Clay	
8.25	15.00	6.75	Silty Clay; reddish brown, medium moisture	Silty Clay	

Remarks

16/04/2009: Form A Remarks: Nat Carling, 3-May-2012; All details were provided on consultants log. *** End of GW201721 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW054153

Licence: 2	20BL113627	Licence Status: ACTIVE		
		Authorised Purpose(s): DOMESTIC Intended Purpose(s): DOMESTIC		
Work Type:	Bore open thru rock			
Work Status:				
Construct.Method:	Rotary Air			
Owner Type:	Private			
Commenced Date: Completion Date:	01/02/1981	Final Depth: 18.00 m Drilled Depth: 18.00 m		
Contractor Name:				
Driller:				
Assistant Driller:				
Property: GWMA: GW Zone:	-	Standing Water Level (m): Salinity Description: Good Yield (L/s):		
Site Details				
Site Chosen By:				
		County Form A: NORTH Licensed: NORTHUMBERLAND	Parish NORTH.031 KINCUMBER	Cadastre L3 DP26237 (8) Whole Lot 3//26237
Region: 10 -	Sydney South Coast	CMA Map: 9131-2S		
River Basin: 211 Area/District:	- MACQUARIE - TUGGERAH LAKES	Grid Zone:	Sc	ale:
Elevation: 0.00 Elevation Source: (Unk	m (A.H.D.) (nown)	Northing: 6303359.0 Easting: 356736.0		ıde: 33°23'58.3"S ıde: 151°27'34.1"E
GS Map: -		MGA Zone: 0	Coordinate Sou	rce:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

H	ole	Pipe	Component	Туре	From (m)	To (m)		Inside Diameter (mm)	Interval	Details
	1	1	Casing	P.V.C.	0.00	12.00	155			Driven into Hole

Water Bearing Zones

From (m)	To (m)	Thickness (m)	WBZ Type	S.W.L. (m)	(L/s)	 Duration (hr)	Salinity (mg/L)
12	.00 14.00	2.00	(Unknown)	5.70	0.48		

Geologists Log

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	2.00	2.00	Soil	Soil	
2.00	12.00	10.00	Clay	Clay	
12.00	18.00	6.00	Sandstone Shale Water Supply	Sandstone	

Remarks

*** End of GW054153 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW201938

Licence: 20BL170953 Licence Status: ACTIVE Authorised Purpose(s): DOMESTIC Intended Purpose(s): DOMESTIC Work Type: Bore Work Status: Supply Obtained Construct.Method: Rotary Mud Owner Type: Private Commenced Date: Final Depth: 18.00 m Completion Date: 22/03/2007 Drilled Depth: 18.00 m Contractor Name: Driller: Lloyd Norman Whitsed **Assistant Driller:** Property: Standing Water Level: 8.000 GWMA: Salinity: GW Zone: Yield: 0.250 Site Details Site Chosen By: County Parish Form A: NORTH NORTH.31 Licensed: Region: 20 - Hunter CMA Map: 9131-2S River Basin: 211 - MACQUARIE - TUGGERAH LAKES Grid Zone: Scale:

Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown

GS Map: -

Area/District:

MGA Zone: 0

Northing: 6302010.0

Easting: 357145.0

Coordinate Source: GIS - Geographic

Latitude: 33°24'42.3"S

Longitude: 151°27'49.2"E

Cadastre

255//225178

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре		-	Outside Diameter		Interval	Details
						(mm)	(mm)		
1		Hole	Hole	0.00	18.00	175			Rotary Mud
1		Annulus	Waterworn/Rounded	3.00	18.00	175	125		Graded
1	1	Casing	Pvc Class 9	0.00	18.00	125			Seated on Bottom, Glued
1	1	Opening	Slots - Vertical	11.00	17.00	125		1	PVC Class 9, SL: 6.0mm, A: 1.50mm

Water Bearing Zones

	To (m)	Thickness (m)	518 -	S.W.L. (m)		(L/s)	 Duration (hr)	Salinity (mg/L)
9.00	11.00	2.00	Unknown	8.00	17.00	0.25		

Geologists Log Drillers Log

From (m)		Thickness (m)	Drillers Description	Geological Material	Comments
0.00			Sand	Sand	
9.00	10.00	1.00	Sand & organics - lost circulation - water cloudy	Sand	
10.00	14.00	4.00	Clay, heavy & Sand	Sand	
14.00	16.00	2.00	Clay, red	Clay	
16.00	18.00	2.00	Shale	Shale	

Remarks

22/03/2007: Form A Remarks: Nat Carling, 15-May-2012; Coordinates based on location map provided with the Form-A.

*** End of GW201938 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW201720

Licence: 20BL172870 Licence Status: ACTIVE Authorised Purpose(s): MONITORING BORE Intended Purpose(s): MONITORING BORE Work Type: Bore Work Status: Equipped Construct.Method: Auger - Solid Flight Owner Type: Local Govt **Commenced Date:** Final Depth: 13.50 m Completion Date: 16/04/2009 Drilled Depth: 13.50 m **Contractor Name:** Driller: Unkown Unknown **Assistant Driller:** Property: N A 140 BELLEVUE ROAD TUMBI UMBI Standing Water Level: 3.330 2261 NSW GWMA: Salinity: GW Zone: Yield: Site Details Site Chosen By: Parish Cadastre County Form A: NORTH NORTH.31 1130//787305 Licensed: Region: 20 - Hunter CMA Map: 9131-2S River Basin: 211 - MACQUARIE - TUGGERAH LAKES Grid Zone: Scale: Area/District:

Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown Northing: 6303152.0 Easting: 356496.0 Latitude: 33°24'04.9"S Longitude: 151°27'24.7"E allwaterdata.water.nsw.gov.au/wgen/users/129150390//gw201720.wsr.htm

GS Map: -

MGA Zone: 0

Coordinate Source: GPS - Global Positioning System

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details
1		Hole	Hole	0.00	13.50	100			Auger - Solid Flight
1		Annulus	Drill Cuttings	0.00	10.00	100	50		PL:Poured/Shovelled
1		Annulus	Bentonite	10.00	10.50	100	50		PL:Poured/Shovelled
1		Annulus	Waterworn/Rounded	10.50	13.50	100	50		Graded, PL:Poured/Shovelled
1	1	Casing		0.00	13.50	50			Seated on Bottom
1	1	Opening	Slots	11.00	13.50	50		1	()

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
							(m)		

Geologists Log

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	0.50	0.50	Fill; light brown sandy soil	Fill	
0.50	2.25	1.75	Clay; red/light grey, with ironstone fragments	Clay	
2.25	3.75	1.50	Silty Clay; red/grey, medium moisture	Silty Clay	
3.75	6.75	3.00	Silty Clay; red/light grey, increasing moisture	Silty Clay	
6.75	13.50	6.75	Silty Clay; reddish brown, high moisture	Silty Clay	

Remarks

16/04/2009: Form A Remarks: Nat Carling, 3-May-2012; All details were provided on consultants log. Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW051860

Licence: 20BL110868

Licence Status: ACTIVE

Authorised Purpose(s): STOCK,DOMESTIC Intended Purpose(s): STOCK, DOMESTIC

Work Type: Bore

Work Status:

Construct.Method: Rotary Air

Owner Type: Private

Commenced Date: Completion Date: 01/11/1979

Contractor Name:

Driller:

Assistant Driller:

Property: N/A GWMA: -GW Zone: - Final Depth: 12.00 m Drilled Depth: 21.00 m

Standing Water Level (m): Salinity Description: Good Yield (L/s):

Site Details

Site Chosen By:

	County Form A: NORTH Licensed: NORTHUMBERLAND	ParishCadastreNORTH.031L4 DP26237 (8KINCUMBERWhole Lot 4//20	,
Region: 10 - Sydney South Coast	CMA Map: 9131-2S		
River Basin: 211 - MACQUARIE - TUGGERAH LAKES Area/District:	Grid Zone:	Scale:	
Elevation: 0.00 m (A.H.D.) Elevation Source: (Unknown)	Northing: 6303370.0 Easting: 356802.0	Latitude: 33°23'58.0"S Longitude: 151°27'36.7"E	
GS Map: -	MGA Zone: 0	Coordinate Source:	

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре			Diameter	 Interval	Details
1		Backfill	Backfill	12.00	21.00	155		
1	1	Casing	P.V.C.	0.00	12.00	125		
1	1	Opening	Slots - Vertical	6.00	12.00	125	1	Mechanically Slotted, A: 3.00mm

Water Bearing Zones

From (m)	To (m)	Thickness (m)	WBZ Туре	S.W.L. (m)	D.D.L. (m)	Yield (L/s)	Hole Depth (m)	Duration (hr)	Salinity (mg/L)
1.	00 11.00	10.00	Unconsolidated	3.00		0.06			

Geologists Log Drillers Log

From (m)		Thickness (m)	Drillers Description	Geological Material	Comments
0.00	1.00	1.00	Soil	Soil	
1.00	12.00	11.00	Clay Water Bearing	Clay	
12.00	21.00	9.00	Shale	Shale	

Remarks

*** End of GW051860 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

HISTORICAL AERIAL PHOTOGRAPHS

35

s. 1

Forresters Beach NSW

Maas Parade-

image © 2015 DigitalGlobe

oinance

S149 CERTIFICATES

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

Telephone 02 4325 8222 Facsimile 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140005
Certificate Date:	11 November 2015
Address:	985 The Entrance Road FORRESTERS BEACH
Lot Description:	LOT: 3 DP: 101649
Parish:	Kincumber
County:	Northumberland
Assessment No:	515017
Receipt No:	
Parcel No:	429
Applicants Reference:	LOT: 3 DP: 101649
Applicants Email:	

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The property is adjacent to a State Road under the control of Roads and Maritime Services (RMS) and may be affected by an existing road widening scheme.

Enquiries regarding this matter should in the first instance be directed to the RMS Hunter Regional Office Property Enquiries Officer on 49240240. Project or study specific information enquiries should be directed to the RMS's Central Coast Office on 4379 7001.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act 1995* relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

No.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

Telephone 02 4325 8222 Facsimile 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140004
Certificate Date:	11 November 2015
Address:	959 The Entrance Road FORRESTERS BEACH
Lot Description:	LOT: 18 DP: 23283
Parish:	Kincumber
County:	Northumberland
Assessment No:	702662
Receipt No:	
Parcel No:	17636
Applicants Reference:	LOT: 18 DP: 23283
Applicants Email:	

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The property is adjacent to a State Road under the control of Roads and Maritime Services (RMS) and may be affected by an existing road widening scheme.

Enquiries regarding this matter should in the first instance be directed to the RMS Hunter Regional Office Property Enquiries Officer on 49240240. Project or study specific information enquiries should be directed to the RMS's Central Coast Office on 4379 7001.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act 1995* relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

No.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

Telephone 02 4325 8222 Facsimile 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140002
Certificate Date:	11 November 2015
Address:	145 Bakali Road FORRESTERS BEACH
Lot Description:	LOT: 1 DP: 1000694
Parish:	Kincumber
County:	Northumberland
Assessment No:	759977
Receipt No:	
Parcel No:	83803
Applicants Reference:	LOT: 1 DP: 1000694
Applicants Email:	

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The land is not affected by Road Widening Proposals.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act* 1995 relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

No.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

Telephone 02 4325 8222 Facsimile 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140003
Certificate Date:	11 November 2015
Address:	957 The Entrance Road FORRESTERS BEACH
Lot Description:	LOT: 51 DP: 1028301
Parish:	Kincumber
County:	Northumberland
Assessment No:	786260
Receipt No:	
Parcel No:	86998
Applicants Reference:	LOT: 51 DP: 1028301
Applicants Email:	

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The property is adjacent to a State Road under the control of Roads and Maritime Services (RMS) and may be affected by an existing road widening scheme.

Enquiries regarding this matter should in the first instance be directed to the RMS Hunter Regional Office Property Enquiries Officer on 49240240. Project or study specific information enquiries should be directed to the RMS's Central Coast Office on 4379 7001.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS

(No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act* 1995 relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

No.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

Telephone 02 4325 8222 Facsimile 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140000
Certificate Date:	11 November 2015
Address:	137 Bakali Road FORRESTERS BEACH
Lot Description:	LOT: 3 DP: 1000694
Parish:	Kincumber
County:	Northumberland
Assessment No:	759995
Receipt No:	
Parcel No:	83805
Applicants Reference:	LOT: 3 DP: 1000694
Applicants Email:	

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The land is not affected by Road Widening Proposals.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act 1995* relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

No.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

This land has been identified as containing Estuarine Paperbark Scrub Forest. This community may qualify as the endangered ecological community Swamp Sclerophyll Forest on Coastal Floodplains as listed under Part 3 Schedule 1 of the Threatened Species Conservation Act 1995. The presence of this vegetation community may restrict the development potential of the land. The nature and extent of any threatened species or cultural heritage constraints should be determined following an assessment of the land by a qualified and experienced ecologist/consultant.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

Telephone 02 4325 8222 Facsimile 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140001
Certificate Date:	11 November 2015
Address:	143 Bakali Road FORRESTERS BEACH
Lot Description:	LOT: 2 DP: 1000694
Parish:	Kincumber
County:	Northumberland
Assessment No:	759986
Receipt No:	
Parcel No:	83804
Applicants Reference:	LOT: 2 DP: 1000694
Applicants Email:	

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The land is not affected by Road Widening Proposals.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act 1995* relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

 Telephone
 02 4325 8222

 Facsimile
 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	139999
Certificate Date:	11 November 2015
Address:	139 Bakali Road FORRESTERS BEACH
Lot Description:	LOT: 4 DP: 1000694
Parish:	Kincumber
County:	Northumberland
Assessment No:	760000
Receipt No:	
Parcel No:	83806
Applicants Reference:	LOT: 4 DP: 1000694
Applicants Email:	

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The land is not affected by Road Widening Proposals.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act 1995* relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

Telephone 02 4325 8222 Facsimile 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	139998
Certificate Date:	11 November 2015
Address:	987-991 The Entrance Road FORRESTERS BEACH
Lot Description:	LOT: 522 DP: 1077907
Parish:	Kincumber
County:	Northumberland
Assessment No:	515008
Receipt No:	
Parcel No:	91194
Applicants Reference:	LOT: 522 DP: 1077907
Applicants Email:	

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(a) CONSERVATION AND SCENIC PROTECTION (CONSERVATION)UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development) 2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(a) Conservation and Scenic Protection (Conservation) under Interim Development Order No.122

DEVELOPMENT PERMISSIBLE WITHOUT CONSENT

Development (other than exempt development) for the purpose of: home occupations; recreation areas.

Exempt development.

DEVELOPMENT PERMISSIBLE WITH CONSENT

Development (other than exempt development) for the purpose of: agriculture; bed and breakfast accommodation; dams; dwelling-houses; roads;

Subdivision.

PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122

DEVELOPMENT PERMISSIBLE WITHOUT CONSENT

Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas.

Exempt development.

DEVELOPMENT PERMISSIBLE WITH CONSENT

Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals.

Subdivision.

PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

7(a) Conservation & Scenic Protection (Conservation) under Interim Development Order No.122

Clause 22(1) of Interim Development Order No 122 requires that a dwelling house may only be erected on an allotment of land having an area of not less than 40 hectares.

Clause 22(2) of Interim Development Order No 122 requires where the erection of a dwelling house on an allotment of land having an area of less than 40 hectares that the allotment was;

(a) in existence before 18 February 1977 and was not held in the same ownership as any adjoining allotments at that date or

(b) created after 18 February 1977 otherwise than under 20.

Clause 22(3) to (5) of Interim Development Order No 122 requires where the erection of a dwelling house on an allotment of land having an area of less than 40 hectares and which was one of a number of adjoining allotments held in the same ownership as at the 18 February 1977 is subject to the provisions of Section 29 of the Environmental Planning and Assessment Act 1979.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The property is adjacent to a State Road under the control of Roads and Maritime Services (RMS) and may be affected by an existing road widening scheme.

Enquiries regarding this matter should in the first instance be directed to the RMS Hunter Regional Office Property Enquiries Officer on 49240240. Project or study specific information enquiries should be directed to the RMS's Central Coast Office on 4379 7001.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act 1995* relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

This land has been identified as containing Estuarine Paperbark Scrub Forest. This community may qualify as the endangered ecological community Swamp Sclerophyll Forest on Coastal Floodplains as listed under Part 3 Schedule 1 of the Threatened Species Conservation Act 1995. The presence of this vegetation community may restrict the development potential of the land. The nature and extent of any threatened species or cultural heritage constraints should be determined following an assessment of the land by a qualified and experienced ecologist/consultant.

A notice has been served to connect the premises to the sewer.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

TITLE DEED SEARCH

Legal Liaison Searching Services

Level 4, 70 Castlereagh Street, Sydney 2000 PO Box 2513 Sydney NSW 2001 DX 1019 Sydney

Summary of Owners Report

<u>LPI</u>

Sydney

Address: - Bakali Road, Forresters Beach

Description: - Lots 1 2 & 3 D.P 1000694

As regards the part tinted pink on the attached copy of D.P. 1000694

This part was formerly a road, subsequently closed by notification in Government Gazette dated 15.07.1905

The first title to issue was in 1931

Date of Acquisition	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and
and term held	Registered Trophetor(s) & Occupations where available	<u>sale</u>
10.04.1931 (1931 to 1931)	N.S.W. Realty Co Limited	Vol 4475 Fol 124
29.10.1931 (1931 to 1936)	William Harvey (Retired Manufacturer)	Vol 4475 Fol 124 Now Vol 4515 Fol 200
20.05.1936 (1936 to 1941)	William Hedley Harvey (Furniture Warehouseman) (Transmission Application not investigated)	Vol 4515 Fol 200
10.07.1941 (1941 to 1951)	Otto Oscar Groth (Produce Merchant)	Vol 4515 Fol 200
26.06.1951 (1951 to 1959)	Emma May Jorgensen (Married Woman)	Vol 4515 Fol 200
09.12.1959 (1959 to 1972)	Linda Monica Barrie (Widow) James Albert Barrie (Motor Mechanic) Mervyn Francis Barrie (Motor Mechanic)	Vol 4515 Fol 200 Now Vol 8204 Fol 168
14.06.1972 (1972 to 1972)	James Albert Barrie (Motor Mechanic) Mervyn Francis Barrie (Motor Mechanic)	Vol 8204 Fol 168
29.06.1972 (1972 to 1973)	Kevin Arthur Rubie (Company Representative) Margaret Rose Rubie (Married Woman)	Vol 8204 Fol 168
07.06.1973 (1973 to 1992)	K & M Rubie Pty Limited	Vol 8204 Fol 168 Now Auto Consol 8204-168
06.11.1992 (1992 to 1992)	Robert William Polley Anne Patterson Polley Loui Nicholas Mary Nicholas Luigi Cicco Thomas Hope Murrie Donna Leanne Rush John Lisbona Bellhome Pty Limited	Auto Consol 8204-168 Now 1/121549
08.12.1992 (1992 to 1999)	The Park-Forresters Beach Pty Limited	1/121549 Now 3/1000694

Legal Liaison Searching Services

ABN: 52832569710 Ph: 02 9233 5800 Fax: 02 9221 2827

Level 4, 70 Castlereagh Street, Sydney 2000 PO Box 2513 Sydney NSW 2001 DX 1019 Sydney

As regards the part tinted orange on the attached copy of D.P. 1000694

Date of Acquisition	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and
and term held		sale
30.03.1914 (1914 to 1931)	N.S.W. Realty Co Limited	Vol 2010 Fol 248
29.10.1931 (1931 to 1936)	William Harvey (Retired Manufacturer)	Vol 2010 Fol 248 Now Vol 4515 Fol 200
20.05.1936 (1936 to 1941)	William Hedley Harvey (Furniture Warehouseman) (Transmission Application not investigated)	Vol 4515 Fol 200
10.07.1941 (1941 to 1951)	Otto Oscar Groth (Produce Merchant)	Vol 4515 Fol 200
26.06.1951 (1951 to 1959)	Emma May Jorgensen (Married Woman)	Vol 4515 Fol 200
09.12.1959 (1959 to 1972)	Linda Monica Barrie (Widow) James Albert Barrie (Motor Mechanic) Mervyn Francis Barrie (Motor Mechanic)	Vol 4515 Fol 200 Now Vol 8204 Fol 168
14.06.1972 (1972 to 1972)	James Albert Barrie (Motor Mechanic) Mervyn Francis Barrie (Motor Mechanic)	Vol 8204 Fol 168
29.06.1972 (1972 to 1973)	Kevin Arthur Rubie (Company Representative) Margaret Rose Rubie (Married Woman)	Vol 8204 Fol 168
07.06.1973 (1973 to 1992)	K & M Rubie Pty Limited	Vol 8204 Fol 168 Now Auto Consol 8204-168
06.11.1992 (1992 to 1992)	Robert William Polley Anne Patterson Polley Loui Nicholas Mary Nicholas Luigi Cicco Thomas Hope Murrie Donna Leanne Rush John Lisbona Bellhome Pty Limited	Auto Consol 8204-168 Now 1/121549
08.12.1992 (1992 to 1999)	The Park-Forresters Beach Pty Limited	1/121549 Now 3/1000694

As regards the part tinted yellow on the attached copy of D.P. 1000694

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
30.12.1913 (1913 to 1920)	N.S.W. Realty Co Limited	Vol 1991 Fol 206
21.12.1920 (1920 to 1943)	William Julian Hosking (Painter) (& His Deceased Estate)	Vol 1991 Fol 206 Now Vol 3148 Fol 215
26.08.1943 (1943 to 1947)	Stanley Robert Dalziell (Turner)	Vol 3148 Fol 215
22.12.1947 (1947 to 1949)	Thomas Kenneth Griffin (Poultry Farmer)	Vol 3148 Fol 215
22.07.1949 (1949 to 1954)	Ethel Mary Mullen (Married Woman)	Vol 3148 Fol 215 Now Vol 6573 Fol 235
25.10.1954 (1954 to 1969)	Albert Gregory (Poultry Farmer)	Vol 6573 Fol 235

ABN: 52832569710 Ph: 02 9233 5800 Fax: 02 9221 2827

Legal Liaison Searching Services

Level 4, 70 Castlereagh Street, Sydney 2000 PO Box 2513 Sydney NSW 2001 DX 1019 Sydney

Reference to Title at Acquisition and Date of Acquisition Registered Proprietor(s) & Occupations where available and term held <u>sale</u> 29.07.1969 Frederick Roy Bononfant (Retired) Vol 6573 Fol 235 (1969 to 1969) Keith Edward Jones (Butcher) 19.12.1969 Vol 6573 Fol 235 Beryl May Jones (Married Woman) (1969 to 1974) 17.10.1974 Romon (No. 10) Pty Limited Vol 6573 Fol 235 (1974 to 1977) Vol 6573 Fol 235 27.06.1977 K & M Rubie Pty Limited Now (1977 to 1992) Vol 13395 <u>Fol 214</u> Robert William Polley Anne Patterson Polley Loui Nicholas Mary Nicholas 06.11.1992 Luigi Cicco Vol 13395 Fol 214 (1992 to 1992) Thomas Hope Murrie Donna Leanne Rush John Lisbona Bellhome Pty Limited Vol 13395 Fol 214 08.12.1992 The Park-Forresters Beach Pty Limited Now (1992 to 1999) 1, 2 & 3/1000694

Search continued as regards the part tinted yellow on the attached copy of D.P. 1000694

Search continued as regards Lot 1 D.P. 1000694

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
01.06.1999 (1999 to date)	# Melissa Leigh Hall # Damian Bradley James Scott	1/1000694

Denotes current registered proprietors

Easements: -

• 04.05.1999 Restrictions in the use of land (affecting part marked (R) on D.P. 1000694)

• 04.05.1999 Restrictions in the use of land (affecting part marked (S) on D.P. 1000694)

• 04.05.1999 Restrictions in the use of land (D.P. 1000694)

Leases: - NIL

Search continued as regards Lot 2 D.P. 1000694

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
18.06.1999 (1999 to date)	# Craig John Horton # Trudy Anna Horton	2/1000694

Denotes current registered proprietors

Easements: -

- 04.05.1999 Right of Carriageway 10.5. metres wide and variable D.P. 1000694)
- 04.05.1999 Easement for Services 3, 6 and 10.5 metres wide and variable D.P. 1000694)
- 04.05.1999 Restrictions in the use of land (affecting part marked (R) on D.P. 1000694)
- 04.05.1999 Restrictions in the use of land (affecting part marked (S) on D.P. 1000694)
- 04.05.1999 Restrictions in the use of land (D.P. 1000694)
- 04.05.1999 Easement for Water Supply 3 and 10.5 metres wide and variable D.P. 1000694)

Leases: - NIL

Search continued as regards Lot 3 D.P. 1000694

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
16.06.1999 (1999 to 2002)	John Stephen Barr Kathryn Jane Barr	3/1000694
30.08.2002 (2002 to date)	# Brendon Robert Briggs # Julie Anne Briggs	3/1000694

Denotes current registered proprietors

Easements: -

- 15.12.1983 Easement to Drain Water 6 metres wide (T 732471)
- 04.05.1999 Right of Carriageway 10.5 metres wide and variable D.P. 1000694)
- 04.05.1999 Easement for Services 3, 6 and 10.5 metres wide and variable D.P. 1000694)
- 04.05.1999 Restrictions in the use of land (affecting part marked (R) on D.P. 1000694)
- 04.05.1999 Restrictions in the use of land (D.P. 1000694)

Leases: - NIL

Yours Sincerely Mark Groll 10 November 2015 (Ph: 0412 199 304)

Req:R677397 /Doc:DP 1000694 P Ref:forresters /Src:T /Prt:09-Nov-2015 15:12 /Pgs:ALL /Seq:1 of 1 /Rev: 11-May -1999 /Sts:OK . OK

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------9/11/2015 3:14PM

FOLIO: AUTO CONSOL 8204-168

Recorded 2/6/1992	Number	Type of Instrument CONSOL HISTORY RECORD CREATED FOR AUTO CONSOL 8204-168 PARCELS IN CONSOL ARE: 5/24187, 7-8/24187, 1/121549	C.T. Issue
6/11/1992			
6/11/1992			
6/11/1992	E876835	MORTGAGE	EDITION 1
3/12/1992		1/121549 EXCISED	
8/12/1992 8/12/1992			EDITION 2
4/1/1993	I19939	DEPARTMENTAL DEALING	EDITION 3
9/9/1994 9/9/1994	U603868 U603869		EDITION 4
19/9/1994	U603868	7/24187 EXCISED	
20/9/1994	U634104	DEPARTMENTAL DEALING	EDITION 5
5/10/1994 5/10/1994 5/10/1994	U668770	5/24187 EXCISED	

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

Req:R677496 /Doc:DL E876834 /Rev:22-Feb-2007 /Sts:NO.OK /Prt:09-Nov-2015 15:17 /Pgs:ALL /Seq:1 of 2⁵ Ref:forresters /Src:I only RP13 ZANSFE Office of State Reveal \$07943984007 40 9845 866010 (A) LAND TRANSFERRED FOLIO IDENTIFIER AUTO-CONSOL 8204-168 Show no more than 20 References to Title. VOLUME 4490 FOLIO 138, VOLUME 13395 FOLIO 214 -If appropriate, specify the share transferred. FOLIO IDENTIFIER 2/706892, FOLIO IDENTIFIER 62/747931 FOLIO IDENTIFIER 4/8857, FOLIO IDENTIFIER 3/45580. Name, Address or DX and Telephone NATIONAL AUSTRALIA BANK LIMITED **(B)** LODGED BY L.T.O. Box National Australia Bank Limited 255 George Street, Sydney FAX 237-1284 237 - 1111 REFER TRANSFERORK. & M. RUBIE PTY LIMITED (ACN 000 870.155)..... (C) (D) acknowledges receipt of the consideration of $\frac{$2,600,000.00}{...}$ and as regards the land specified above transfers to the transferee an estate in fee simple subject to the following ENCUMBRANCES 1 WI72226 2. (E) TRANSFEREE **(F)** SEE ANNEXURE A as joint tenants/tenants in common (G) (H) We certify this dealing correct for the purposes of the Real Property Act, 1900. DATE Signed in my presence by the transferor who is personally known to me. ignature of Witness Duly executed by the Vendor K & MM Rubie Pty Limited by its duly authorised NEIL R. CUSSEN Signature of Witness Name of Witness (BLOCK) Attorney Kevin R Shirlaw pursuant to MARKET ST, STONE Name of Witness (BLOCK LETTERS) Address of Witness Power of Attorney Book 3873 No 637. Signature of Transferor Address of Witness Signed in my presence by the transferee who is personally known to me. Signature of Witness Name of Witness (BLOCK LETTERS) Address of Witness SOLICITOR FOR Signaturoof Transferee WAKIM) (PAUL V. AILABLE FROM THE LAND TITLES OFFICE CHECKED BY (office use only) INSTRUCTIONS FOR FILLING OUT THIS F JA ik .

Req:R677496 /Doc:DL E876834 /Rev:22-Feb-2007 /Sts:NO.OK /Prt:09-Nov-2015 15:17 /Pgs:ALL /Seq:2 of 2 Ref:forresters /Src:T

8

THIS IS THE ANNEXURE "A" TO THE TRANSFER BY K. & M. RUBIE PTY. LIMITED AS TRANSFEROR OF THE LAND COMPRISED IN THE FOLLOWING TITLES.

- 1. FOLIO IDENTIFIER AUTO-CONSOL 8204-168
- 2. VOLUME 4490 FOLIO 138,
- 3. FOLIO IDENTIFIER 2/706892
- 4. FOLIO IDENTIFIER 4/8857
- 5. VOLUME 13395 FOLIO 214
- 6. FOLIO IDENTIFIER 62/747931
- 7. FOLIO IDENTIFIER 3/45580

TRANSFEREE

4490-138

 $\langle \cdot, \cdot \rangle$

ROBERT WILLIAM FOLLEY and ANNE PATTERSON POLLEY both of 4 Whitfield Avenue, Ashfield as joint tenants as to an undivided one-fifth share, as tenant in common with

LOUI NICHOLAS and MARY NICHOLAS both of 16 × Florida Avenue, Ermington, as joint tenants as to an undivided one-fifth share, as tenant in common with

LUIGI CICCO of 1/8 Eastbourne Road, Homebush, /// as to an undivided one-tenth share, as tenant /// in common with

THOMAS HOPE MURRIE of 37A Copeland Road, Beecroft, as to an undivided one-tenth share, |// as tenant in common with

✗ DONNA LEANNE RUSH, of 37A Copeland Road, Beecroft, as to an undivided one-tenth share, /// as tenant in common with

JOHN LISBONA, of 49 Broome Street, Maroubra, 1/100 as to an undivided one-tenth share, as tenant 1/1000 in common with

BELLHOME PTY LIMITED (ACN 056 418 252) C/-Murrie & Co, Accountants, 2 O'Connell Street, Parramatta, as to an undivided two-tenths share.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 9/11/2015 3:10PM

FOLIO: 1/121549

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 8204 FOL 168

Recorded 28/5/1992	Number DP121549	Type of Instrument DEPOSITED PLAN	C.T. Issue LOT RECORDED FOLIO NOT CREATED
2/6/1992		CONVERTED TO AUTO CONSOL 8204-168	CONSOL CREATED CT NOT ISSUED
3/12/1992		EXCISED FROM AUTO CONSOL 8204-168	
8/12/1992 8/12/1992	E924050 E924052	DISCHARGE OF MORTGAGE	EDITION 2
4/1/1993	I19939	DEPARTMENTAL DEALING	EDITION 3
5/5/1994	DP838562	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

	prresters /Src:T	7-2010 /Sts:OK.SC /Prt:09-Nov-2015 15:12 /Pgs:ALL /Seq:1 of 3
	RP13	Conflice of State Re
	i nav k]]
(A)	LAND TRANSFERRED Show no more than 20 References to Title. If appropriate, specify the share transferred.	being Lot 1 in Deposited Plan 121549 Part Volume 8204 Folio 168/ and the whole of Volume 13395 Folio 214
(8)	LODGED BY	LT.O. Box 249H Dibbs Crowther and Osborne DX 101 Sydney Tel: 290 8220
	TRANSFEROR	REFERENCE (max. 15 characters): DJS ROBERT WILLIAM POLLEY, ANNE PATTERSON POLLEY, LOUI NICHOLAS, MARY NICHOLAS, LUIGI CICCO, THOMAS HOPE MURRIE, DONNA LEANNE RUSH, JOHN LISBONA AND BELLHOME PTY.LIMITED ACN.056.418.252
(D)	acknowledges receipt of the consideration	on of
e E	and as regards the land specified above to subject to the following ENCUMBRANC	transfers to the transferee an estate in fee simple CES 1.
ſÐ	TRANSFEREE THE PA of C/- Sydney	
(G)		as joint tenants/tenants in common OVER
(H)	We certify this dealing correct for the pa Signed in my presence by the transferor	
	Signature of Witness	
	Name of Witness (BLOCK LET	TERS) SEE ANNEXURE "A" HERETO
	Address of Witness	Signature of Transferor
	Signed in my presence by the transferee	who is personally known to me.
	3	-
4	Signature of Witness	
Ø.,2'	Name of Witness (BLOCK LET	TERS)
	Address of Witness	Signature of Transferee's Solicitor . DAVID JAMES SHARPE
(Nev Nev	INSTRUCTIONS FOR FILLING OUT THIS FORM	ARE AVAILABLE FROM THE LAND TITLES OFFICE CHECKED BY (office use only)
Aus	sdoc Commercial and Law Stationers 1991	

Reg:R677399 /Doc:DL E924052 /Rev:17-May-2010 /Sts:OK.SC /Prt:09-Nov-2015 15:12 /Pgs:ALL /Seg:2 of 3 Ref:forresters /Src:T

BY POLLEY, NICHOLAS, "A" TO THE TRANSFER THIS IS THE ANNEXURE CICCO, MURRIE, RUSH, LISBONA & BELLHOME PTY LTD AS TRANSFERORS AND THE PARK-FORRESTERS BEACH PTY LIMITED AS TRANSFEREES.

ROBERT WILLIAM POLLEY

ANNE PATTERSON POLLEY

LOUI NICHOLAS

M Dicholan MARY NICHOLAS

ALL VINCHNT NAME OF WITNESS

42 A MACULA ST ADDRESS OF WITNESS

SIGNATURE OF WITNESS

CO LUIGI CICCO

THOMAS HOPE MURRIE

rina DONNA LEANNE RUSH

Jah JOHN LISBONA

THE COMMON SEAL OF BELLHOME PTY LIMITED (ACN 056 418 252) was hereunto affixed by Order of the Board in the presence of

MITED Commun Seal DIRECTOR

SECRETARY

A : -5			OFFIC		E924052
	2	REG	ISTRATION D	RECTION ANNEXURE	<i>.</i>
12 12 13				and Second Schedule directions H SIDES OF THE FORM	
		а 9	FIRST SCHEL	DULE DIRECTIONS	
FOLIO DENTIFIER	(B)			NAME K-FORRESTERS BE	ACH PTY LIMITED
13395-21	4 <u>}</u>				
	2	3	2) (j		
					Anna a cara
				AND OTHER DIRECTIONS	
FOLIO IDENTIFIER	(E) DIRECTION	NOTEN	DEALING }	DETAILS	
1/121549	OFF	EA	F688378	U	
n - Sandhar					1
		8			
	-				
(1
			1		
an a					
			·		
1.5				· · · · · · · · · · · · · · · · · · ·	
				an a	······································
21					
a a subsection of the second				- HARTIN	· · · · · · · · · · · · · · · · · · ·
1					
•• •• •• •• •• •• •• •• •• ••			 		
9.9		1			5

FIG: TochElle (canned) FIG: T	18561044		A578906 .	ICVST	Party R. R.	To branch		5			c 1901 9210	100 906 5	WE197354	VR9510RMF	E 87683 DW	E 92 A FOR		E92405211	DP\$38562	1		1		1-1	-		-1	 -T-	1	-	-	
Clear the factor of the factor		Signature af Registrar General				ARTICA .												Burner														
Clear the factor of the factor		ENTERED															CANCELLATION	S170564			W879735	E 976421	1500.0									
CHEDULE (continued) MATURE (continued) MATURE (continued) MATURE (continued) MATURE (continued) SCHEDULE (continued) SCHEDULE (continued) MATURE (continued) SCHEDULE (continued) SCHED		DATE	and		n dans	1-01	500														Procharged											
CHEDULE (continued) MATURE Continued 6 15 - 1992 Continued 6 15 - 1992 Continued 6 15 - 1992 CHEDULE (continued) SCHEDULE (continued) SCHEDULE (continued) CHEDULE (CHEDULE) CHEDULE (CHEDUL		INSTRUMENT	Vacheres		- and and	man nav	201 6 -11-1									100 million 100 million 100 million	Signature af Registrar General				and a second	- 600	100									
CHEDULE (continued to the continued to the continued to the continued of the continued of the continued of the continued to t		NATURE	and share	1	success and	Cino acut	the free ward	-									ENTERED	14-2-1980	-remor	-2-1921.		0.00	XE		-							
	FIRST SCHEDULE (continued)	REGISTERED PROPRIETOR	Posti and those Profiler Pollow as here to	a section is a lot of the section of	an 110 animal	a cleaning thech in the	amental	they tough hand, the stall be	1 minute la reverse a harman a reverse a							SECOND S	INSTRUMENT DATE NUMBER DATE		Nation of accumption the load as indicated	being lot S in DP193578 in wow sublic road. Aport	to A.L.R.C. Lossing Nominees Phy Limit Christeristered 17-3-49	1-0-0		Foglatered 4-5	to whoto/part upon cr	61, 62						

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 9/11/2015 3:10PM

FOLIO: 61/838562		
First Title(s) Prior Title(s)	: VOL 1273 FOL 205 VOL 4475 FOI : 1/121549 VOL 13395 FO	
Recorded Number 5/5/1994 DP838562	Type of Instrument DEPOSITED PLAN	C.T. Issue FOLIO CREATED EDITION 1
21/7/1997 3253310	MORTGAGE	EDITION 2
4/5/1999 DP1000694	DEPOSITED PLAN	FOLIO CANCELLED
* * *	END OF SEARCH ***	

forresters

PRINTED ON 9/11/2015

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

FOLIO: 1/10	00694				
	t Title(s): r Title(s):	VOL 1273 FOL 2 61/838562	05		
Recorded	Number	Type of Instrum	ment	C.T. Iss	sue
4/5/1999	DP1000694	DEPOSITED PLAN		FOLIO CR EDITION	
1/6/1999	5869181	DISCHARGE OF MO	ORTGAGE		
1/6/1999	5869182	TRANSFER		EDITION	2
25/2/2000	6597085	MORTGAGE		EDITION	3

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act. Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

		ARCH DATE	TIME	EDITION NO	
		11/2015	3:06 PM	3	
LAND					
AT I LOCA PARI	FORREST AL GOVE ISH OF	SITED PLAN 1 ERS BEACH RNMENT AREA KINCUMBER RAM DP100069	GOSFORD COUNTY OF NORTHU	JMBERLAND	
FIRST S					
MELISSA	A LEIGH				
		Y JAMES SCOT	T IN EQUAL SHARES		(T 58691)
no	I DIVINI I	o in comion	IN BOOMD STIMICED		(1 50051)
SECOND		LE (7 NOTIFI	CATIONS)		
			ITIONS IN THE CR	COWN GRANT (S)	
		COVENANT EASEMENT FO	R SERVICES 3,6,1	0.5 METRES WIDE A	ND
1 101	000694			LAND ABOVE DESCR	
4 DEI			NATED (R) IN THE		INE FARI
5 DP1	000694		(S) ON THE USE C (S) IN THE TITLE	F LAND AFFECTING	THE PART
		RESTRICTION	(S) ON THE USE C	F LAND	
	7085	MORTGAGE TO LIMITED	AUSTRALIA AND N	EW ZEALAND BANKIN	G GROUP
	NS				
7 659 NOTATIC				OLIO OF THE REGIS	

forresters

PRINTED ON 9/11/2015

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

FOLIO: 2/1000694

First Title(s): VOL 1273 FOL 205 Prior Title(s): 61/838562

Recorded	Number	Type of Instrument	C.T. Issue
4/5/1999	DP1000694	DEPOSITED PLAN	FOLIO CREATED EDITION 1
18/6/1999 18/6/1999	5912286 5912287	DISCHARGE OF MORTGAGE	
18/6/1999	5912288	MORTGAGE	EDITION 2
19/5/2010 19/5/2010	AF499392 AF499393	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 3

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----9/11/2015 3:08PM

FOLIO: 3/1000694

First Title(s): VOL 1273 FOL 205 VOL 4475 FOL 124 Prior Title(s): 61/838562

Recorded	Number	Type of Instrument	C.T. Issue
4/5/1999	DP1000694	DEPOSITED PLAN	FOLIO CREATED EDITION 1
16/6/1999 16/6/1999	5907218 5907219	DISCHARGE OF MORTGAGE	EDITION 2
8/9/1999	6171417	MORTGAGE	EDITION 3
30/8/2002 30/8/2002 30/8/2002 30/8/2002	8911295 8911296 8911297 8911298	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE MORTGAGE	EDITION 4

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

Ref:forres	00 /Doc:DL 59072 sters /Src:T IT (19 /Rev:19-Jun-19 Licence Number 010CN/0214/95	TR	/Prt:09-Nov-2015 15:12 /1 ANSFER Property Act, 1900	Pgs:ALL /Seq:1 of 1 5907219L
		\$5,00	S)	0ffice of Sta_ £0/9281∠2008 ≯0	2007 86500Z
(A)	LAND TRANSI Show no more then 20 If appropriate, spacify t	References to Title.	61/838562(PA	INATEW.E	*.N
(B)	LODGED BY		l.t.0 Box 147R	Aubrey Brown Partners DX 7305 Wyong (02) 4332 8077	
				Reference : 3777 :80 840	DI: BUYY
(C)	TRANSFEROR		THE PARK FO	ORRESTERS BEACH PTY	LIMITED ACN 056 986-282
(D)				\$260,000.00 ers to the Transferee an	estate in fee simple.
(E)	subject to the	following ENCUN	IBRANCES 1.		
(F) (G)	TRANSFEREE	T	JOHN STEPHE Tenancy: Joint T	N BARR AND KATHRYN `enants	JANE BARR
(H)	We certify this	dealing correct f	or the purpose:	s of the Real Property Ac	t, 1900 21/5/ 1999
	0.56 9.86 in the o	Signature of Witness Full Control of Witness Signature of Witness Signature of Witness Full Control of Control Signature of Witness Signature of Control	Loreto a ff of: HEBSI	020 380 285	e. Boot 90 90 82 Bignature of Transferer director
	Signed in my	presence by the T		is personally known to m	
		Signature of Witness			1 110 815 A
		f Witness (BLOCK LE			apple
		Address of Witness			Solicitor for Transferee - Gordon William Popple
	1			2 ¹	CHECKED BY (File use only)

12

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

		ARCH DATE	TIME			DATE
		11/2015		4		30/8/2002
LAN						
LOI	5 3 IN DEPO AT FORREST LOCAL GOVE PARISH OF	RNMENT AREA	GOSFORD COUNTY OF NORTHU	JMBERLAND		
FIF	RST SCHEDUL	E				
BRE	NDON ROBER JIE ANNE BR AS JOINT	T BRIGGS IGGS				(T 8911296
SEC	COND SCHEDU		ICATIONS)			
			ITIONS IN THE CH	ROWN GRANT(S)		
 1	RESERVATI	 ONS AND COND COVENANT AF	ITIONS IN THE CE FECTING THE PART			IN
1 2	RESERVATI C101804	ONS AND COND COVENANT AF THE TITLE D COVENANT AF	ITIONS IN THE CF FECTING THE PART IAGRAM. FECTING THE PART	SHOWN SO BU	RDENED	
1 2	RESERVATI C101804 A654456	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D	ITIONS IN THE CF FECTING THE PART IAGRAM. FECTING THE PART IAGRAM	SHOWN SO BU	RDENED RDENED	IN
1 2 3 4	RESERVATI C101804 A654456 T732471	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN	ITIONS IN THE CF FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 P SO BURDENED IN T	SHOWN SO BU SHOWN SO BU METRES WIDE A THE TITLE DIA	RDENED RDENED FFECTI GRAM	IN NG THE
1 2 3	RESERVATI C101804 A654456 T732471	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA	ITIONS IN THE CE FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 N	SHOWN SO BU SHOWN SO BU METRES WIDE A THE TITLE DIA METRES WIDE A	RDENED RDENED FFECTI GRAM ND VAR	IN NG THE IABLE
1 2 3 4 5	RESERVATIO C101804 A654456 T732471 DP1000694	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM	ITIONS IN THE CE FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 N SO BURDENED IN T RRIAGEWAY 10.5 N HE PART(S) SHOWN	SHOWN SO BU SHOWN SO BU METRES WIDE A THE TITLE DIA METRES WIDE A SO BURDENED	RDENED RDENED FFECTI GRAM ND VAR IN TH	IN NG THE IABLE E TITLE
1 2 3 4	RESERVATIO C101804 A654456 T732471 DP1000694	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA	ITIONS IN THE CE FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 N SO BURDENED IN T RRIAGEWAY 10.5 N	SHOWN SO BU SHOWN SO BU METRES WIDE A THE TITLE DIA METRES WIDE A SO BURDENED METRES WIDE A	RDENED RDENED FFECTI GRAM ND VAR IN TH ND VAR	IN NG THE IABLE E TITLE
1 2 3 4 5 6	RESERVATIO C101804 A654456 T732471 DP1000694 DP1000694	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA APPURTENANT EASEMENT FO	ITIONS IN THE CE FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 N SO BURDENED IN T RRIAGEWAY 10.5 N HE PART(S) SHOWN RRIAGEWAY 10.5 N TO THE LAND ABC R SERVICES 3,6,1	SHOWN SO BU SHOWN SO BU METRES WIDE A THE TITLE DIA METRES WIDE A SO BURDENED METRES WIDE A DVE DESCRIBED .0.5 METRES W	RDENED RDENED FFECTI GRAM ND VAR IN TH ND VAR IDE AN	IN NG THE IABLE E TITLE IABLE D
1 2 3 4 5 6	RESERVATIO C101804 A654456 T732471 DP1000694 DP1000694	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA APPURTENANT EASEMENT FO VARIABLE AF	ITIONS IN THE CH FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 N SO BURDENED IN T RRIAGEWAY 10.5 N HE PART(S) SHOWN RRIAGEWAY 10.5 N TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART	SHOWN SO BU SHOWN SO BU METRES WIDE A THE TITLE DIA METRES WIDE A SO BURDENED METRES WIDE A DVE DESCRIBED .0.5 METRES W	RDENED RDENED FFECTI GRAM ND VAR IN TH ND VAR IDE AN	IN NG THE IABLE E TITLE IABLE D
1 2 3 4 5 6	RESERVATIO C101804 A654456 T732471 DP1000694 DP1000694 DP1000694	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA APPURTENANT EASEMENT FO VARIABLE AF THE TITLE D	ITIONS IN THE CH FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 N SO BURDENED IN T RRIAGEWAY 10.5 N HE PART(S) SHOWN RRIAGEWAY 10.5 N TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART	SHOWN SO BU SHOWN SO BU METRES WIDE A THE TITLE DIA METRES WIDE A SO BURDENED METRES WIDE A OVE DESCRIBED 0.5 METRES W S(S) SHOWN SO	RDENED RDENED FFECTI GRAM ND VAR IN TH ND VAR IDE AN BURDE	IN NG THE IABLE E TITLE IABLE D NED IN
1 2 3 4 5 6 7 8	RESERVATIO C101804 A654456 T732471 DP1000694 DP1000694 DP1000694 DP1000694	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA APPURTENANT EASEMENT FO VARIABLE AF THE TITLE D EASEMENT FO VARIABLE AP	ITIONS IN THE CE FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 N SO BURDENED IN T RRIAGEWAY 10.5 N HE PART (S) SHOWN RRIAGEWAY 10.5 N TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART IAGRAM R SERVICES 3,6,1 PURTENANT TO THE	SHOWN SO BU SHOWN SO BU METRES WIDE A THE TITLE DIA METRES WIDE A SO BURDENED METRES WIDE A OVE DESCRIBED 0.5 METRES W C(S) SHOWN SO 0.5 METRES W CLAND ABOVE	RDENED RDENED FFECTI GRAM ND VAR IN TH ND VAR IDE AN BURDE IDE AN DESCRI	IN NG THE IABLE E TITLE IABLE D NED IN D BED
1 2 3 4 5 6 7	RESERVATIO C101804 A654456 T732471 DP1000694 DP1000694 DP1000694 DP1000694	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA APPURTENANT EASEMENT FO VARIABLE AF THE TITLE D EASEMENT FO VARIABLE AP RESTRICTION	ITIONS IN THE CE FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 N SO BURDENED IN T RRIAGEWAY 10.5 N HE PART(S) SHOWN RRIAGEWAY 10.5 N TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART IAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE C	SHOWN SO BU SHOWN SO BU ATTES WIDE A THE TITLE DIA ATTES WIDE A SO BURDENED ATTES WIDE A OVE DESCRIBED O.5 METRES W C(S) SHOWN SO O.5 METRES W CLAND ABOVE DF LAND AFFEC	RDENED RDENED FFECTI GRAM ND VAR IN TH ND VAR IDE AN BURDE IDE AN DESCRI TING T	IN NG THE IABLE E TITLE IABLE D NED IN D BED
1 2 3 4 5 6 7 8	RESERVATIO C101804 A654456 T732471 DP1000694 DP1000694 DP1000694 DP1000694	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA APPURTENANT EASEMENT FO VARIABLE AF THE TITLE D EASEMENT FO VARIABLE AP RESTRICTION SHOWN DESIGN	ITIONS IN THE CE FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 N SO BURDENED IN T RRIAGEWAY 10.5 N HE PART(S) SHOWN RRIAGEWAY 10.5 N TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART IAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE CO NATED (R) IN THE (S) ON THE USE CO	SHOWN SO BU SHOWN SO BU ATTES WIDE A THE TITLE DIA ATTES WIDE A SO BURDENED ATTES WIDE A OVE DESCRIBED O.5 METRES W C(S) SHOWN SO C.5 METRES W C(S) SHOWN SO C.5 METRES W C(S) SHOWN SO CONTRACTOR OF LAND AFFEC OF LAND AFFEC	RDENED RDENED FFECTI GRAM ND VAR IN TH ND VAR IDE AN BURDE IDE AN DESCRI TING T M	IN NG THE IABLE E TITLE IABLE D NED IN D BED HE PART
1 2 3 4 5 5 6 7 8 8 9 10	RESERVATIO C101804 A654456 T732471 DP1000694 DP1000694 DP1000694 DP1000694 DP1000694	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA AFPURTENANT EASEMENT FO VARIABLE AF THE TITLE D EASEMENT FO VARIABLE AP RESTRICTION SHOWN DESIGN RESTRICTION DESIGNATED	ITIONS IN THE CE FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 N SO BURDENED IN T RRIAGEWAY 10.5 N HE PART(S) SHOWN RRIAGEWAY 10.5 N TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART IAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE CO NATED (R) IN THE (S) ON THE USE CO (S) IN THE TITLE	SHOWN SO BU SHOWN SO BU ATTES WIDE A THE TITLE DIA ATTES WIDE A SO BURDENED ATTES WIDE A OVE DESCRIBED O.5 METRES W C(S) SHOWN SO C.5 METRES W C(S) SHOWN SO C) SHOWN SO BU C) SHOWN SO C) SHOWN SO	RDENED RDENED FFECTI GRAM ND VAR IN TH ND VAR IDE AN BURDE IDE AN DESCRI TING T M	IN NG THE IABLE E TITLE IABLE D NED IN D BED HE PART
1 2 3 4 5 6 7 8 9	RESERVATIO C101804 A654456 T732471 DP1000694 DP1000694 DP1000694 DP1000694 DP1000694	ONS AND COND COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA AFFECTING T CARIABLE AF THE TITLE D EASEMENT FO VARIABLE AP RESTRICTION DESIGNATED RESTRICTION	ITIONS IN THE CE FECTING THE PART IAGRAM. FECTING THE PART IAGRAM DRAIN WATER 6 N SO BURDENED IN T RRIAGEWAY 10.5 N HE PART(S) SHOWN RRIAGEWAY 10.5 N TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART IAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE CO NATED (R) IN THE (S) ON THE USE CO	SHOWN SO BU SHOWN SO BU ATTES WIDE A THE TITLE DIA ATTES WIDE A SO BURDENED ATTES WIDE A OVE DESCRIBED O.5 METRES W C(S) SHOWN SO C.5 METRES W C(S) SHOWN SO C.5 METRES W C(S) SHOWN SO CONTROLOGICAL	RDENED RDENED FFECTI GRAM ND VAR IN TH ND VAR IDE AN BURDE IDE AN DESCRI TING TI M TING TI	IN NG THE IABLE E TITLE IABLE D NED IN D BED HE PART

END OF PAGE 1 - CONTINUED OVER

forresters

PRINTED ON 9/11/2015

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 3/1000694

PAGE 2

NOTATIONS

NOTE: THE CERTIFICATE OF TITLE FOR THIS FOLIO OF THE REGISTER DOES NOT INCLUDE SECURITY FEATURES INCLUDED ON COMPUTERISED CERTIFICATES OF TITLE ISSUED FROM 4TH JANUARY, 2004. IT IS RECOMMENDED THAT STRINGENT PROCESSES ARE ADOPTED IN VERIFYING THE IDENTITY OF THE PERSON(S) CLAIMING A RIGHT TO DEAL WITH THE LAND COMPRISED IN THIS FOLIO. UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 4/1000694

SEARCH DATE	TIME	EDITION NO	DATE
27/10/2014	12:07 PM	5	24/10/2014

LAND

LOT 4 IN DEPOSITED PLAN 1000694 AT FORRESTERS BEACH LOCAL GOVERNMENT AREA GOSFORD PARISH OF KINCUMBER COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP1000694

FIRST SCHEDULE

VERSATILE LIVING PTY LIMITED

(T AI980929)

SECOND SCHEDULE (10 NOTIFICATIONS)

SEC	OND SCHEDU	LE (IU NOTIFICATIONS)
1	RESERVATIO	 DNS AND CONDITIONS IN THE CROWN GRANT(S)
2	C101804	COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
3	A654456	COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM
4	т732471	EASEMENT TO DRAIN WATER 6 METRES WIDE AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM
5	DP1000694	RIGHT OF CARRIAGEWAY 10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
6	DP1000694	RIGHT OF CARRIAGEWAY 10.5 METRES WIDE AND VARIABLE APPURTENANT TO THE LAND ABOVE DESCRIBED
7	DP1000694	EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
8	DP1000694	EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND VARIABLE APPURTENANT TO THE LAND ABOVE DESCRIBED
9	DP1000694	RESTRICTION(S) ON THE USE OF LAND AFFECTING THE PART DESIGNATED (S) IN THE TITLE DIAGRAM
10	DP1000694	RESTRICTION(S) ON THE USE OF LAND
NOT	ATIONS	
UNR	EGISTERED I	DEALINGS: NIL

*** END OF SEARCH ***

PRINTED ON 27/10/2014

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.

© State of New South Wales through Land and Property Information (2014)

SAI Global Property Division an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with section 96B(2) of the Real Property Act 1900.

Order number: 24810309 Your Reference: DCB:TC:8703(Klumper 957) 30/10/14 15:53

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 51/1028301

SEARCH DATE	TIME	EDITION NO	DATE
30/10/2014	3:53 PM	6	15/11/2012

LAND

LOT 51 IN DEPOSITED PLAN 1028301 AT FORRESTERS BEACH LOCAL GOVERNMENT AREA GOSFORD PARISH OF KINCUMBER COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP1028301

FIRST SCHEDULE

TERRIGAL GROSVENOR LODGE PTY LIMITED

(T AD272087)

SECOND SCHEDULE (12 NOTIFICATIONS)

1		ONS AND CONDITIONS IN THE CROWN GRANT(S)
2	A654456	COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM
3	DP1000694	RIGHT OF CARRIAGEWAY 10.5 METRES WIDE AND VARIABLE
4	DP1000694	APPURTENANT TO THE LAND ABOVE DESCRIBED RIGHT OF FOOTWAY 3 METRES WIDE AND VARIABLE AFFECTING
_		THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
5	DP1000694	EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN
		THE TITLE DIAGRAM
б	DP1000694	EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND
		VARIABLE APPURTENANT TO THE LAND ABOVE DESCRIBED
7		RESTRICTION(S) ON THE USE OF LAND
•		72 VARIATION OF RESTRICTION DP1000694
8	DP1000694	EASEMENT FOR WATER SUPPLY 3,10.5 METRES WIDE AND
		VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN
		THE TITLE DIAGRAM
9	DP1028301	EASEMENT TO DRAIN SEWAGE OVER EXISTING LINE OF PIPES APPURTENANT TO THE LAND ABOVE DESCRIBED
10	1029201	EASEMENT FOR SERVICES 3 METRE(S) WIDE AND VARIABLE
ΤŪ	DPI020301	AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE
		DIAGRAM
11	1029201	RIGHT OF FOOTWAY 3 METRE(S) WIDE AND VARIABLE
<u>тт</u>	DPI020301	AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE
		DIAGRAM
12	AH369317	MORTGAGE TO SECURE FUNDING PTY LTD

END OF PAGE 1 - CONTINUED OVER

PRINTED ON 30/10/2014

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH _____

FOLIO: 51/1028301 ____

PAGE 2

NOTATIONS _____

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

PRINTED ON 30/10/2014

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. © State of New South Wales through Land and Property Information (2014)

SAI Global Property Division an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with section 96B(2) of the Real Property Act 1900.

1965075

LegalStream Australia Pty Ltd

ABN: 80 002 801 498

Level 15, 115 Pitt Street, SYDNEY NSW 2000, AUSTRALIA * DX654, SYDNEY Tel: (02) 9231 0122 Fax: (02) 9233 6411 www.legalstream.com.au An Approved LPI NSW Information

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 522/1077907

SEARCH DATE	TIME	EDITION NO	DATE
3/5/2013	9:52 AM	3	23/5/2011

LAND

LOT 522 IN DEPOSITED PLAN 1077907 AT FORRESTERS BEACH LOCAL GOVERNMENT AREA GOSFORD PARISH OF KINCUMBER COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP1077907

FIRST SCHEDULE

TERRIGAL GROSVENOR LODGE PTY LIMITED

(T AG146253)

SECOND SCHEDULE (17 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

2	C20279	COVENANT	AFFECTING	THE	PART	SHOWN	SO	BURDENED	IN
		THE TITL	E DIAGRAM.						

- 3 C101804 COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
- 4 AA842085 COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
- 5 A654456 COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
- 6 T732471 EASEMENT TO DRAIN WATER 6 METRES WIDE AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 7 DP1000694 RIGHT OF CARRIAGEWAY 10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 8 DP1000694 RIGHT OF CARRIAGEWAY 10.5 METRES WIDE AND VARIABLE APPURTENANT TO THE PART SHOWN SO BENEFITED IN THE TITLE DIAGRAM
- 9 DP1000694 RIGHT OF FOOTWAY 3 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 10 DP1000694 EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 11 DP1000694 EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND VARIABLE APPURTENANT TO THE PART SHOWN SO BENEFITED IN THE TITLE DIAGRAM
- 12 DP1000694 RESTRICTION(S) ON THE USE OF LAND AFFECTING THE PART DESIGNATED (S) IN THE TITLE DIAGRAM 7870972 VARIATION OF RESTRICTION DP1000694
- 13 DP1000694 RESTRICTION(S) ON THE USE OF LAND AFFECTING THE PART

END OF PAGE 1 - CONTINUED OVER

7358

PRINTED ON 3/5/2013

LegalStream Australia Pty Ltd

ABN: 80 002 801 498

Level 15, 115 Pitt Street, SYDNEY NSW 2000, AUSTRALIA * DX654, SYDNEY Tel: (02) 9231 0122 Fax: (02) 9233 6411 www.legalstream.com.au

An Approved LPI NSW Information

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 522/1077907

PAGE 2

SECOND SCHEDULE (17 NOTIFICATIONS) (CONTINUED)

SHOWN SO BURDENED IN THE TITLE DIAGRAM

- 14 DP1000694 EASEMENT FOR WATER SUPPLY 3,10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 15 DP1028301 EASEMENT TO DRAIN SEWAGE OVER EXISTING LINE OF PIPES AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 16 DP1028301 EASEMENT FOR SERVICES 3 METRE(S) WIDE AND VARIABLE APPURTENANT TO THE PART SHOWN SO BENEFITED IN THE TITLE DIAGRAM
- 17 DP1028301 RIGHT OF FOOTWAY 3 METRE(S) WIDE AND VARIABLE APPURTENANT TO THE PART SHOWN SO BENEFITED IN THE TITLE DIAGRAM

NOTATIONS

- UNREGISTERED DEALINGS: T AH702607.
 - *** END OF SEARCH ***

PRINTED ON 3/5/2013

7358

LegalStream Australia Pty Ltd

 ABN: 80 002 801 498
 An Approved

 Level 15, 115 Pitt Street, SYDNEY NSW 2000, AUSTRALIA * DX654, SYDNEY
 LPI NSW

 Tel: (02) 9231 0122
 Fax: (02) 9233 6411
 www.legalstream.com.au
 Information

Search Date: 03-May-2013 Cost Summary

Our Ref#	Search Type	Search Reference	Client Ref#		Total Cost I	otal GST
2778667	Title Search	522/1077907	7358		10.14	0.93
			REPORT	TOTAL:	10.14	0.93

* * * END OF REPORT * * *

Order number: 24810486 Your Reference: DCB:TC:8704(Klumper - 959) 30/10/14 15:56

+

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 18/23283

SEARCH DATE	TIME	EDITION NO	DATE
	- -		
30/10/2014	3:56 PM	6	15/11/2012

LAND

LOT 18 IN DEPOSITED PLAN 23283 LOCAL GOVERNMENT AREA GOSFORD PARISH OF KINCUMBER COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP23283

FIRST SCHEDULE

TERRIGAL GROSVENOR LODGE PTY LIMITED

(T AD272087)

SECOND SCHEDULE (3 NOTIFICATIONS)

1 LAND EXCLUDES MINERALS AND IS SUBJECT TO RESERVATIONS AND CONDITIONS IN FAVOUR OF THE CROWN - SEE CROWN GRANT(S)

2 A654456 COVENANT

3 AH369317 MORTGAGE TO SECURE FUNDING PTY LTD

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

PRINTED ON 30/10/2014

* Any entries preceded by an astensk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.

© State of New South Wales through Land and Property Information (2014)

SAI Global Property Division an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with section 96B(2) of the Real Property Act 1900.

TEST BORE LOGS

Explanatory Notes

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS1726-1993 Geotechnical Site Investigations. Material descriptions are deduced from field observation or engineering examination, and may be appended or confirmed by in situ or laboratory testing. The information is dependent on the scope of investigation, the extent of sampling and testing, and the inherent variability of the conditions encountered.

Subsurface investigation may be conducted by one or a combination of the following methods.

Method	
Test Pitting: e	excavation/trench
BH	Backhoe bucket
EX	Excavator bucket
Х	Existing excavation
Natural Expos	sure: existing natural rock or soil exposure
Manual drilling	g: hand operated tools
HA	Hand Auger
Continuous sa	ample drilling
PT	Push tube
Hammer drilli	ng
AH	Air hammer
AT	Air track
Spiral flight au	uger drilling
AS	Large diameter short spiral auger
AD/V	Continuous spiral flight auger: V-Bit
AD/T	Continuous spiral flight auger: TC-Bit
Hollow flight a	auger drilling
HFA	Continuous hollow flight auger
Rotary non-co	bre drilling
WS	Washbore (mud drilling)
RR	Rock roller
Rotary core d	rilling
HQ	63mm diamond-tipped core barrel
NMLC	52mm diamond-tipped core barrel
NQ	47mm diamond-tipped core barrel
Concrete cori	ng
DT	Diatube

Sampling is conducted to facilitate further assessment of selected materials encountered.

Sampling me	Sampling method			
Disturbed san	npling			
В	Bulk disturbed sample			
D	Disturbed sample			
ES	Environmental soil sample			
Undisturbed s	ampling			
SPT	Standard Penetration Test sample			
U	Thin wall tube 'undisturbed' sample			
Water sample	es			
EW	Environmental water sample			

Field testing may be conducted as a means of assessment of the in situ conditions of materials.

Field tes	Field testing			
SPT	Standa	rd Penetration Test (blows/150mm)		
HP/PP	Hand/F	Pocket Penetrometer		
Dynamic	Penetror	meters (generally blows/150mm)		
	DCP	Dynamic Cone Penetrometer		
	PSP	Perth Sand Penetrometer		
MC	Moisture Content			
VS	Vane Shear			
PBT	Plate Bearing Test			
PID	Photo I	onization Detector		

If encountered, refusal (R) or virtual refusal (VR) of SPT or dynamic penetrometers may be noted.

The quality of the rock can be assessed be the degree of fracturing and the following.

Rock q	uality description
TCR	Total Core Recovery (%)
	(length of core recovered divided by the length of core run)
RQD	Rock Quality Designation (%)
	(sum of axial lengths of core greater than 100mm long divided by the length of core run)

Notes on groundwater conditions encountered may include.

Groundwater

Not Encountered	Excavation is dry in the short term
Not Observed	Water level observation not possible
Seepage	Water seeping into hole
Inflow	Water flowing/flooding into hole

Perched groundwater may result in a misleading indication of the depth to the true water table. Groundwater levels are also likely to fluctuate with variations in climatic and site conditions.

Notes on the stability of excavations may include.

Excavation conditions		
Stable	No obvious/gross short term instability noted	
Spalling	Material falling into excavation (minor/major)	
Unstable	Collapse of the majority, or one or more face of the excavation	

Explanatory Notes: General Soil Description

The methods of description and classification of soils used in this report are based on Australian Standard AS1726-1993 Geotechnical Site Investigations. In practice, a material is described as a soil if it can be remoulded by hand in its field condition or in water. The dominant component is shown in upper case, with secondary components in lower case. In general descriptions cover: soil type, plasticity or particle size/shape, colour, strength or density, moisture and inclusions.

In general, soil types are classified according to the dominant particle on the basis of the following particle sizes.

Soil Classification		Particle Size	
CLAY		< 0.002mm	
SILT		0.002mm 0.075mm	
SAND	fine	0.075mm to 0.2mm	
	medium	0.2mm to 0.6mm	
	coarse	0.6mm to 2.36mm	
GRAVEL	fine	2.36mm to 6mm	
	medium	6mm to 20mm	
	coarse	20mm to 63mm	
COBBLES		63mm to 200mm	
BOULDERS		> 200mm	

Soil types are qualified by the presence of minor components on the basis of field examination or the particle size distribution.

Description	Percentage of minor component
Trace	< 5% in coarse grained soils
	< 15% in fine grained soils
With	5% to 12% in coarse grained soils
	15% to 30% in fine grained soils

The strength of cohesive soils is classified by engineering assessment or field/laboratory testing as follows.

Strength	Symbol	Undrained shear strength
Very Soft	VS	< 12kPa
Soft	S	12kPa to 25kPa
Firm	F	25kPa to 50kPa
Stiff	St	50kPa to 100kPa
Very Stiff	VSt	100kPa to 200kPa
Hard	Н	> 200kPa

Cohesionless soils are classified on the basis of relative density as follows.

Relative Density	Symbol	Density Index
Very Loose	VL	< 15%
Loose	L	15% to 35%
Medium Dense	MD	35% to 65%
Dense	D	65% to 85%
Very Dense	VD	> 85%

The moisture condition of soil is described by appearance and feel and may be described in relation to the Plastic Limit (PL) or Optimum Moisture Content (OMC).

Moistu	re condition and description		
Dry	ohesive soils: hard, friable, dry of plastic limit. ranular soils: cohesionless and free-running		
Moist	Cool feel and darkened colour: Cohesive soils can be moulded. Granular soils tend to cohere		
Wet	Cool feel and darkened colour: Cohesive soils usually weakened and free water forms when handling. Granular soils tend to cohere		
The pla	sticity of cohesive soils is defined as follows.		
Plastic	ity Liquid Limit		
Low pla	sticity ≤ 35%		
Mediun	plasticity > $35\% \le 50\%$		
High pl	asticity > 50%		
The str	ucture of the soil may be described as follows.		
Zoning	J Description		
Layer	Continuous across exposure or sample		
Lens	Discontinuous layer (lenticular shape)		
Pocket	Irregular inclusion of different material		

The structure of soil layers may include: defects such as softened zones, fissures, cracks, joints and root-holes; and coarse grained soils may be described as strongly or weakly cemented.

The soil origin may also be noted if possible to deduce.

Soil origin and description		
Fill	Man-made deposits or disturbed material	
Topsoil	Material affected by roots and root fibres	
Colluvial	Transported down slopes by gravity	
Aeolian	Transported and deposited by wind	
Alluvial	Deposited by rivers	
Lacustrine	Deposited by lakes	
Marine	Deposits in beaches, bays and estuaries	
Residual	Developed on weathered rock	

The origin of the soil generally cannot be deduced on the appearance of the material only and may be determined based on further geological evidence or other field observation.

Explanatory Notes: General Rock Description

The methods of description and classification of rocks used in this report are based on Australian Standard AS1726-1993 Geotechnical Site Investigations. In practice, if a material cannot be remoulded by hand in its field condition or in water, it is described as a rock. In general, descriptions cover: rock type, grain size, structure, colour, degree of weathering, strength, minor components or inclusions, and where applicable, the defect types, shape, roughness and coating/infill.

Sedimentary rock types are generally described according to the predominant grain size as follows.

Rock Type	Descriptio	on
CONGLOMERATE	Rounded gravel sized fragments	
	(>2mm) ce	emented in a finer matrix
SANDSTONE Sand size particles defined		
	following g	rain sizes:
	fine	0.06mm to 0.2mm
	medium	0.2mm to 0.6mm
	coarse	0.6mm to 2mm
SILTSTONE	Predominately silt sized particles	
SHALE	Fine partic	les (silt or clay) and
	fissile	
CLAYSTONE	Predominately clay sized particles	

The classification of rock weathering is described based on definitions in AS1726 and summarised as follows.

Term and symbol		Definition
Residual Soil	RS	Soil developed on rock with the mass structure and substance of the parent rock no longer evident
Extremely weathered	XW	Weathered to such an extent that the rock has 'soil-like' properties
Distinctly weathered	DW	The strength is usually changed and may be highly discoloured. Porosity may be increased by leaching, or decreased due to deposition in pores
Slightly weathered	SW	Slightly discoloured; little or no change of strength from fresh rock
Fresh Rock	FR	The rock shows no sign of decomposition or staining

The rock material strength can be defined based on the point load index as follows.

Term and symbol		Point Load Index I _s 50
Extremely low	EL	< 0.03MPa
Very Low	VL	0.03MPa to 0.1MPa
Low	L	0.1MPa to 0.3MPa
Medium	Μ	0.3MPa to 1MPa
High	Н	1MPa to 3MPa
Very High	VH	3MPa to 10MPa
Extremely High	EH	> 10MPa

It is important to note that the rock material strength as above is distinct from the rock mass strength which can be significantly weaker due to the effect of defects. A preliminary assessment of rock strength may be made using the field guide detailed in AS1726, and this is conducted in the absence of point load testing.

The defect spacing and bedding thickness, measured normal to defects of the same set or bedding, is described as follows.

Definition	Defect Spacing
Thinly laminated	< 6mm
Laminated	6mm to 20mm
Very thinly bedded	20mm to 60mm
Thinly bedded	60mm to 0.2m
Medium bedded	0.2m to 0.6m
Thickly bedded	0.6m to 2m
Very thickly bedded	> 2m

Terms for describing rock and defects are as follows.

Terms			
Joint	JT	Sheared zone	SZ
Bed Parting	BP	Sheared surface	SS
Contact	CO	Seam	SM
Dyke	DK	Crushed Seam	CS
Decomposed Zone	DZ	Infilled Seam	IS
Fracture	FC	Foliation	FL
Fracture Zone	FZ	Vein	VN

The shape and roughness of defects in the rock mass are described using the following terms.

Planarity		Roughness	
Planar	PR	Very Rough	VR
Curved	CU	Rough	RF
Undulating	U	Smooth	S
Irregular	IR	Polished	POL
Stepped	ST	Slickensides	SL

The coating or infill associated with defects in the rock mass are described as follows.

Definition	Description
Clean	No visible coating or infilling
Stain	No visible coating or infilling; surfaces discoloured by mineral staining
Veneer	Visible coating or infilling of soil or mineral substance (<1mm). If discontinuous over the plane; patchy veneer
Coating	Visible coating or infilling of soil or mineral substance (>1mm)

Graphic Symbols Index

Clays

Silts

Sandy SILT

Gravelly SILT

Sands

Clayey SAND

Silty SAND

Gravels

TUFF, VOLCANIC BRECCIA

VIL V

CLIENT : TGL Pty Ltd

TESTBORE LOG

HOLE NO : TB001 PROJECT REF : 80514013-04 SHEET : 1 OF 1

PROJECT : Urban Capability Assessment LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator DATE EXCAVATED : 20/10/15 METHOD : 300mm Auger LOGGED BY : AM

CHECKED BY : AM LOCATION : See Drawing for location GROUND WATER LEVELS DYNAMIC PENETROMETER MOISTURE / WEATHERING PENETRO-METER (kPa) CONSISTENCY / REL DENSITY / ROCK STRENGTI GRAPHIC LOG DEPTH (m) MATERIAL DESCRIPTION LES & ASSIFICATI SYMBOL Soil Type, plasticity or particle characteristic, colour Rock Type, grain size, colour Secondary and minor components STRUCTURE & Other Observations SAMPLE FIELD TE 5 0.0 16 86 80 TOPSOIL; Silty SAND, fine to coarse grained, pale brown, with organics 24 64 2 Μ 3 0.10m 0.10m PID=0.0 TB001-1 Sandy SILT, brown 0.20m 10 ALLUVIUM 1 L 6 Μ 0.5 **HP In-situ = 300 - 400 kPa 3 1 L 1 4 0.80 RESIDUAL Silty CLAY, medium to high plasticity, pale grey mottled red-orange, trace gravel, with silt 5 11 жж HP In-situ = 300 - 400 kPa 7 1.00m 1.0 L 1 11 1 1 Т 1 6 1.20m T 11 14 MC > PL VSt - H 1.5 L 1 18 1 1 80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/11/2015 09:22 8.30.003 Т 2.0 11 2.20r Testbore TB001 terminated at 2.20 m 1.1 11 Target depth 1 T Т 2.5 Т 1 | | | |T. 3.0 00 CARDNO TESTHOLE I MOISTURE & GROUNDWATER SAMPLES & FIELD TESTS CONSISTENCY RELATIVE DENSITY ROCK STRENGTH ROCK WEATHERING Dry
Moist
Wet
Optimum MC
Plastic Limit
Water seepage/inflow
Water lovel D U - Undisturbed Sample VS - Very Soft VL - Very Loose EL - Extremely low RS - Residual soil M -W -OMC -PL -Very low Low Medium D Disturbed Sample VL S F -Soft Loose XW Extremely weathered -VL -L -M -H -ES -Environmental sample -Firm MD - Medium Dense DW -Distinctly weathered SW - Slightly weathered FR - Fresh rock Bulk Disturbed Sample D - Dense VD - Very Dense В -St Stiff H - High VH - Very high EH - Extremely high 5 SPT -Standard Penetration Test VSt -Very Stiff HP - Hand/Pocket Penetrometer GLB Ţ. -Water level H - Hard HOHLOH See Explanatory Notes for CARDNO LTD details of abbreviations & basis of descriptions.

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

TESTBORE LOG

HOLE NO : TB002 PROJECT REF : 80514013-04 SHEET : 1 OF 1

LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

DATE EXCAVATED : 20/10/15 LOCATION : See Drawing for location METHOD : 300mm Auger LOGGED BY : AM

CHECKED BY : AM

	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DE Soil Type, plasticity or part Rock Type, gra Secondary and mi	ticle characteristic, col iin size, colour	our	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO- 300 METER 400 (kPa)		STRUCTURE & Other Observations
		0.10m	0.0	79 98 99 99 F 48 99 8 59 50 99	4	TOPSOIL; Silty SAND, fine to coarse 0.10m	e grained, pale brown, wi	th organics	MC > PL		3			
		TB002-1 0.20m				Silty CLAY, low plasticity, dark brown	n-black, with sand						PIE	D=0.0
		В									3		AL	LUVIUM
			- 0.5 — -								1			
									MC > PL	St - VSt				-
											2			_
		0.70m				0.70m					5			-
						Silty CLAY, medium to high plasticity	, pale grey						RE	ESIDUAL
			-								5			
			1.0 -								5			_
			-											
											7			
											13			
			- 1.5 —											-
									MC > PL	St - F	21			-
						as above but colour change to pale								
.30.003			as above, but colour change to pale grey mottled orange											
09:22 8		2.0										_		
/11/2015														
GPJ 23,						2.20m Testbore TB002 terminated at 2.20 f	m							
H NSW.				-		Target depth								
S BEAC				-										-
ESTER			2.5	-										_
FORR				-										
KALI RC														
3-04_BA														
3051401														-
3.0 3.0 3.0 3.0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4														
								ROCK WEATHERING						
GEOTECH.GLB Log CARDNO_TESTHOLE_LOG 80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/11/2015 09:22 8:30.003	D - Dry M - Moist W - Wet OMC - Optimum MC PL - Plastic Limit ► - Water seepage/inflow ▼ - Water level			C		U - Undisturbed Sample D - Disturbed Sample ES - Environmental sample B - Bulk Disturbed Sample SPT - Standard Penetration Test HP - Hand/Pocket Penetrometer	VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	VL - Very L - Loose MD - Mediu D - Dens VD - Very	Loose e um Dens e	e L V H V V	L - L - \ - I - H - \	Extremely I /ery low _ow Medium	ow	RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
GEOTECH.G	detai	Explanator Is of abbre sis of desc	viatior	IS			CARDNO	LTD						·

METHOD : 300mm Auger

LOGGED BY : AM

HOLE NO : TB003 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CHECKED BY : AM

PROJECT : Urban Capability Assessment LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/11/2015 09:22 8.30.003

00

CARDNO TESTHOLE I

8

GLB

HOHLOH

details of abbreviations & basis of descriptions.

DATE EXCAVATED : 20/10/15

LOCATION : See Drawing for location GROUND WATER LEVELS DYNAMIC PENETROMETER MOISTURE / WEATHERING HAND PENETRO-METER (kPa) CONSISTENCY / REL DENSITY / ROCK STRENGTI GRAPHIC LOG DEPTH (m) MATERIAL DESCRIPTION LES & ASSIFICAT SYMBOL Soil Type, plasticity or particle characteristic, colour Rock Type, grain size, colour Secondary and minor components STRUCTURE & Other Observations SAMPLE FIELD TE 200 300 5 8 0.0 FILL/TOPSOIL; Gravelly SAND, fine to coarse grained, pale brown, trace brick fragments 1 М 0.10m 11 PID=0.0 TB003-1 0.15m ALLUVIUM Silty CLAY, medium to high plasticity, dark grey-black 0.20m | | | |11 MC > PL F - St 0.5 $\star\star$ 11 HP In-situ = 100 - 200 kPa 11 0.75m U50 0.80n 11 RESIDUAL Silty CLAY, medium to high plasticity, pale grey mottled orange 11 1.1 1.0 | |1.15m 1 1 ** | HP In-situ = 100 - 200 kPa MC > PL F - St 1.5 L groundwater - 1 L 2.0 1.1 2.20 Testbore TB003 terminated at 2.20 m Т 1 Target depth 1 Т 2.5 1 | | | |1 3.0 MOISTURE & GROUNDWATER SAMPLES & FIELD TESTS CONSISTENCY RELATIVE DENSITY ROCK STRENGTH ROCK WEATHERING Dry
Moist
Wet
Optimum MC
Plastic Limit
Water seepage/inflow
Water lovel D -M -W -OMC -PL -U - Undisturbed Sample VS - Very Soft VL - Very Loose EL - Extremely low RS - Residual soil VL -L -M -H -Very low Low Medium D Disturbed Sample S F -Soft Loose XW Extremely weathered -ES -Environmental sample -Firm MD - Medium Dense DW -Distinctly weathered SW - Slightly weathered FR - Fresh rock Bulk Disturbed Sample В -St Stiff D - Dense H - High VH - Very high EH - Extremely high VD - Very Dense SPT -Standard Penetration Test VSt -Very Stiff HP - Hand/Pocket Penetrometer Ţ. -Water level H - Hard See Explanatory Notes for CARDNO LTD

					ters Beach, NSW						SHEET : "	1 OF 1
	UIPMENT				or		THOD : 300 GGED BY : .		ger		CHE	CKED BY : AM
	CATION :				cation	LO						
			- 0	-								
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL D Soil Type, plasticity or par Rock Type, gra Secondary and m	ticle characteristic, col ain size, colour	our	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO- 300 METER 400 (kPa)	STRUCTURE & Other Observations
	0.10m TB004-1 0.20m	-		0.	TOPSOIL; Silty SAND, fine to coars	se grained, dark brown		M - W				PID=3.1 ALLUVIUM
	0.65m	- - 0.5 —						M - W			+ + + + + + + + + + + + + + + + + + +	HP In-situ = 100 - 200 kPa
	U50 0.95m	-		0.	.70m Silty CLAY, medium to high plasticity	γ, orange mottled pale gre	у			-		RESIDUAL
		1.0 — - -						MC - PL	VSt - St			HP In-situ = 200 - 300 kPa
		- 1.5 — -										- - - -
22 8.30.003		-		2	.00m							HP In-situ = 300 - 400 kPa
		- 2.0			Testbore TB004 terminated at 2.00 Target depth	m						
LI RD_FORRESTERS BEAC		- 2.5										
JG 80514013-04_BAKA		- - 3.0-										
OLE_L(
	MC - Optin - Plast Wate	num M(ic Limit r seepa	0		SAMPLES & FIELD TESTS U - Undisturbed Sample D - Disturbed Sample E - Environmental sample B - Bulk Disturbed Sample SPT - Standard Penetration Test HP - Hand/Pocket Penetrometer	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DI VL - Very I L - Loose MD - Mediu D - Dense VD - Very I	Loose e um Dense e	e L V H V	L - L - 1 - 1 -	Medium	XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
See deta	Explanator ails of abbre asis of desc	viation	s			CARDNO	LTD					

HOLE NO : TB004

PROJECT REF : 80514013-04

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

CLIENT : TGL Pty Ltd

TESTBORE LOG

METHOD : 300mm Auger

LOGGED BY : AM

HOLE NO : TB005 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CHECKED BY : AM

EQUIPMENT TYPE : 5t Excavator

DATE EXCAVATED: 20/10/15

HOHLOH

LOCATION : See Drawing for location

PROJECT : Urban Capability Assessment

LOCATION : Bakali Road, Forrsters Beach, NSW

ATE EXO						n	LO	GGED BY :	AM			CHE	CKED BY : AM
										1	,	1	
LEVELS SAMPLES &		~ I	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL D Soil Type, plasticity or par Rock Type, gra Secondary and m	ticle characteristic, cole iin size, colour	Dur	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO- 300 METER 400 (kPa)	STRUCTURE & Other Observations
0.10m	- 0.0	0-	নত কি ক েবৰ কি ব তে কে বে বৰ	4		TOPSOIL; Silty SAND, fine to coars	e grained, dark brown		M - D		8		
TB006- 0.20m	1				0.15m	Silty CLAY, low to medium plasticity,	pale grev mottled red						PID=0.2 RESIDUAL
											10		
0.40m											9		
U50	0.9	5									-		
0.60m		Ĭ								VSt - H	6		*
		_									7		↑HP In-situ = 400 - 600 kPa
											7		
		-				as above, but with gravel					/ 		
1.00m U50	1.0	0 —				as above, but with graver					5	 * *	HP In-situ = 200 - 300 kPa
		-									7		
1.20m		-							MC < PL				
		-									17		
		-											
	1.	5 —								St - VSt			
		-											
		_											
	2.0												
					2.20m								
		_				Testbore TB006 terminated at 2.20 Target depth	m						
		-											
	2.	5											
		-											
		-											
		-											
		-											
		0_		<u> </u>	<u> </u>								
IOISTURI 0 - D 1 - N V - V 0MC - C	Dry Aoist Vet Optimum	MC		R	U D ES	PLES & FIELD TESTS - Undisturbed Sample - Disturbed Sample - Environmental sample - Bulk Disturbed Sample	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff	RELATIVE D VL - Very L - Loos MD - Medi D - Dens	Loose e um Dens	e L	EL - /L - /l -	Medium	XW - Extremely weather DW - Distinctly weather
— - V	Plastic Li Vater se Vater lev	epa	ge/inflo	N	SPT ·	 Buik Disturbed Sample Standard Penetration Test Hand/Pocket Penetrometer 	VSt - Stiff VSt - Very Stiff H - Hard	VD - Very			н - ′Н-	High Very high Extremely hi	SW - Slightly weathered FR - Fresh rock gh
e Explar ails of a		tions	;				CARDNO	LTD					I

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

BORE LOG

METHOD : 300mm Auger

HOLE NO : TB006 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

DATE EXCAVATED: 20/10/15

METHOD : 300mm Auger

LOGGED BY : AM

HOLE NO : TB007 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CHECKED BY : AM

TESTBORE LOG

METHOD : 300mm Auger

LOGGED BY : AM

PROJECT : Urban Capability Assessment

LOCATION : Bakali Road, Forrsters Beach, NSW

HOLE NO : TB008 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CHECKED BY : AM

EQUIPMENT TYPE : 5t Excavator DATE EXCAVATED : 20/10/15

LOCATION : See Drawing for location

					sters Beach, NSW						SHEE	1:1	OF 1
	JIPMENT				ltor		IETHOD : 300 OGGED BY :		ger		C		CKED BY : AM
	CATION :				ocation	Ľ					0		
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	Soil Type, plasticity or Rock Type, Secondary an	L DESCRIPTION particle characteristic, c , grain size, colour d minor components	olour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO- 300 METER	400 (KPa)	STRUCTURE & Other Observations
	0.10m TB009-1 QA1 & QA2 0.20m	-			FILL; Silty SAND, fine to coarse	∋ grained, brown		м		2			PID=0.0
		-			FILL; Silty CLAY, medium plasti	city, orange-red (sitewon)		MC > PL	F - St	4			HP In-situ = 200 kPa
		0.5-			0.50m TOPSOIL, Clayey SILT, dark gr	ey		w		3			
	0.80m B	-			0.80m Silty CLAY, low to medium plasti	icity, pale grey mottled oran	ge-red			3			RESIDUAL
		1.0-								9 10	 	*	HP In-situ = 300 - 400 kPa
	1.40m	-								8			
		1.5-						MC > PL	VSt - H	10			
		-											
		2.0-											
		-	FKK		2.20m								
		-			Testbore TB009 terminated at 2	2.20 m							
		2.5-											
		-											
		3.0 —								1			
D M W	IC - Optin - Plast	um Mo c Limit r seepa	C		SAMPLES & FIELD TESTS U - Undisturbed Sample D - Disturbed Sample ES - Environmental sample B - Bulk Disturbed Sample SPT - Standard Penetration Test HP - Hand/Pocket Penetrometer		RELATIVE D VL - Very L - Loos MD - Medi D - Dens VD - Very	Loose e um Dense e	e L V F	iL - iL - \ iL - i - i - iH - \	Medium	ly low '	XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
See deta & ba	Explanator ils of abbre asis of desc	viation	S			CARDNO	D LTD						

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

HOLE NO : TB009 PROJECT REF : 80514013-04

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/11/2015 09:23 8.30.003

00

CARDNO TESTHOLE I

8

с С HOHLOH

METHOD : 300mm Auger

HOLE NO : TB010 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CLIENT	:	TGL F	Ptv Ltd	

HOLE NO : TB011 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CHECKED BY : AM

PROJECT : Urban Capability Assessment LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

SEOTECH.GLB

See Explanatory Notes for

details of abbreviations & basis of descriptions.

DATE EXCAVATED : 20/10/15 LOCATION : See Drawing for location METHOD : 300mm Auger LOGGED BY : AM

GROUND WATER LEVELS DYNAMIC PENETROMETER HAND PENETRO-METER (KPa) MOISTURE / WEATHERING CONSISTENCY / REL DENSITY / ROCK STRENGTI GRAPHIC LOG DEPTH (m) MATERIAL DESCRIPTION LES & CLASSIFICAT SYMBOL Soil Type, plasticity or particle characteristic, colour Rock Type, grain size, colour Secondary and minor components STRUCTURE & Other Observations SAMPLE FIELD TE 0.0 FILL; Clayey Sandy SILT, dark brown, with gravel, contains brick fragments, plastic, metal scrap 12 0.10m PID=0.0 TB011-1 0.20m 12 0.25m Υ¥, X TOPSOIL; Sandy SILT, dark brown 44 14 1 T. 1 र राज राज स संव राज राज MC < PL F - VSt 11 14 24.24 315 3.4 3 0.50m 0.5 RESIDUAL Silty CLAY, medium plasticity, orange-red 3 1 0.60m ₩ -* HP In-situ = 100 - 200 kPa | |2 2 3 1.00m 1.0 L 1 1 | |4 as above, but colour change to pale grey mottled red L | | |6 | | | |MC > PL н 21 1.5 L 80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/11/2015 09:23 8.30.003 L 2.0 1.1 2.20r Testbore TB011 terminated at 2.20 m 1.1 Target depth 1 Т 2.5 1 | | | |T. 3.0 00 CARDNO TESTHOLE I MOISTURE & GROUNDWATER SAMPLES & FIELD TESTS CONSISTENCY RELATIVE DENSITY ROCK STRENGTH ROCK WEATHERING Dry
Moist
Wet
Optimum MC
Plastic Limit
Water seepage/inflow
Water lovel D -M -W -OMC -PL -U - Undisturbed Sample VS - Very Soft VL - Very Loose EL - Extremely low RS - Residual soil Very low Low Medium D Disturbed Sample VL S F -Soft Loose xw Extremely weathered -VL -L -M -H -ES -Environmental sample -Firm MD - Medium Dense DW -Distinctly weathered SW - Slightly weathered FR - Fresh rock Bulk Disturbed Sample В -St Stiff D - Dense VD - Very Dense H - High VH - Very high EH - Extremely high 8 SPT -Standard Penetration Test VSt -Very Stiff HP - Hand/Pocket Penetrometer Ţ. -Water level H - Hard

LOO	CATION :	Baka	li Road	For	rsters	Beach, NSW						SHE	ET	: 1	OF 1
					ator			THOD : 300		ger					
	TE EXCAN CATION :				ocatio	n	LC	GGED BY :	AM				СН	IEC	KED BY : AM
LOC	JATION .	See	Jiawing		ocatio	11									
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DE Soil Type, plasticity or part Rock Type, grai Secondary and mi	ESCRIPTION icle characteristic, co in size, colour inor components	lour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND	300 METER	400 (mm)	STRUCTURE & Other Observations
		0.0 —	म राज रंग रा <u>यह राष्ट्र राष</u>	1		TOPSOIL; Sandy SILT, dark brown			м					İ	ALLUVIUM
	0.10m TB012-1 0.20m	-		1	0.10m	Clayey SILT, black									PID=0.1
	D 0.30m	-			0.35m				MC < PL						
	0.40m B	-				Silty CLAY, medium plasticity, orange	e-red, trace of sand								RESIDUAL
	0.50m	0.5 —											¥;	* 	HP In-situ = 300 - 400 kPa .
		-													
		-											Ì		
		1.0 —												 	-
		-				as above, but colour change to pale	grey mottled red		MC < PL	VSt - H				 	
		-											*		HP In-situ > 300 kPa
		1.5 —												 	-
		-													
003		-													
09:23 8.30.		2.0													-
23/11/2015		-			2.20m										
H NSW.GPJ		-				Testbore TB012 terminated at 2.20 r Target depth	m								
ERS BEACH		- 2 F													
FORREST		2.5 —													-
BAKALI RD		_													
80514013-04_E		-										 	 		· · · · · · · · · · · · · · · · · · ·
HOLE_LOG	-	3.0 —													
RDNO_TE	MC - Optin Plast Wate	num M(ic Limit r seepa	C		U D ES B SPT	PLES & FIELD TESTS - Undisturbed Sample - Disturbed Sample - Environmental sample - Bulk Disturbed Sample - Standard Penetration Test - Hand/Pocket Penetrometer	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE D VL - Very L - Loose MD - Medit D - Dens VD - Very	Loose e um Dens e	e L N H	ROCK S L - /L -	Extrer Very I Low Mediu High Very I	nely ow ım nigh	low	XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
SEOTECH.	Explanator ails of abbre asis of desc	viation	s				CARDNC	LTD							•

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

HOLE NO : TB012 PROJECT REF : 80514013-04

				-	Assessment rsters Beach, NSW						SHEET : 1	REF : 80514013-04 I OF 1
EQ	UIPMENT	TYPE	: 5t E	xcava	ator	ME	THOD : 300	mm Aug	ger			
						LC	GGED BY : A	۹M			CHEC	CKED BY : AM
LO	CATION :	Seel	Drawing	g for I	ocation							
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		cle characteristic. co	lour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO- 300 METER 400 (KPa)	STRUCTURE & Other Observations
	0.10m		নত কৃষ্ঠ কৃষ্ঠ দ কৃষ্ঠ কৃষ্ঠ ক তৃত কৃষ্ঠ কৃষ্	1	TOPSOIL; Sandy SILT, dark brown 0.10m							
	TB013-1	-	ЙЙ		Clayey SILT, black					1		PID=0.0
	0.20m D 0.30m	-						М				ALLUVIUM
	0.40m TP013-2	-			0.40m Silty CLAY, medium plasticity, pale gr	ey mottled orange				-		RESIDUAL
		0.5 —									 * * 	
		-						MC > PL	St - VSt			
		1.0 —										-
		-			as above, but colour change to pale (grey				-		
		1.5									* * 	HP In-situ = 300 - 400 kPa
		-										
03		-						MC < PL	VSt - H			
09:23 8.30.003		2.0 —										_
J 23/11/2015		-			2.20m							
CH NSW.GP		-			Testbore TB013 terminated at 2.20 r Target depth	n						
ESTERS BEA		2.5 —										-
I RD_FORRE		-										
3-04_BAKAL		-	-									
OG 8051401		3.0										
OLE_L												
RDNO_TE	- Wet MC - Optin - Plast Wate	num Mo ic Limit r seepa	C		SAMPLES & FIELD TESTS U - Undisturbed Sample D - Disturbed Sample ES - Environmental sample B - Bulk Disturbed Sample SPT - Standard Penetration Test HP - Hand/Pocket Penetrometer	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DE VL - Very L L - Loose MD - Mediu D - Dense VD - Very D	Loose e im Dense e	e L V H V	L - L - \ - 1 - -	TRENGTH Extremely low /ery low _ow Medium High /ery high Extremely hig	XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
SEOTECH.G deta	Explanator ails of abbre asis of desc	viation	IS	I		CARDNC						1

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

HOLE NO : TB013 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CLIE	ENT : TO		l td										. TP014
				ilitv A	Assessment) : TB014 TREF : 80514013-04
					rsters Beach, NSW								I OF 1
	JIPMENT			·		MF	THOD : 300r	mm Au	ger				
							GGED BY : A				(CHEC	CKED BY : AM
	CATION :					20							
臣	TS &	(c	0	NOI		TION		~ O	STH STH	TER	ó	~	
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIP Soil Type, plasticity or particle cha	non racteristic, col	our	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETE	HAND PENETRO-	kPa)	STRUCTURE
	AMP	EPT	LC	SYN	Soil Type, plasticity or particle cha Rock Type, grain size, o Secondary and minor com	colour 1ponents		VIOIS1	CK ST	DYN ETR			& Other Observations
ß	SE	 0.0 —	36 36 36	G		•		- >	Seð	Ű.	100	400	
	0.10m		70, 77, 77, 7, 77, 77, 7 <u>20, 57, 77</u>	4	TOPSOIL; Silty SAND, fine to coarse grained	d, brown		м					
	TB014-1	-	ĪĪĪŽ		Clayey SILT, black					1	ΪÌ	i i	PID=0.0
	0.20m	-		1									
			ИИ]				м			i i		ALLUVIUM
		-	ИИ										
		-	КИ		0.40m					4			DEOIDUAL
					Silty CLAY, medium plasticity, pale grey mottle	ed orange					ΪÌ	i i	RESIDUAL
		0.5 —									**		HP In-situ = 100 - 200 kPa
		-											
			WX								i i	i i	
		-	1111]									
		-	¥XX										
		-	VXX/										
		1.0 —	¥XX/										-
								MC > PL	St - H				
		-											-
		-									ίi	i i	
			VXX										
		-	III									İİ	-
		1.5	III										_
		1.5	VXX								Ϊİ		
		-											-
		-											
					as above, but colour change to pale grey						ΪÌ	i i	
		-									*	*	HP In-situ = 200 - 300 kPa
0.003		-											-
3 8.3				1				MC < PL	VSt			ļ į	
09:2		2.0	1111	1									-
/2015		-	¥¥¥	1									-
23/11			WŴ		2.20m								
GPJ		-			Testbore TB014 terminated at 2.20 m						++	+ +	
NSW.		-	-		Target depth						ii	i i	
ACH P													
S BE		-	1										-
STER		2.5 —	-										-
RRES													
D D		-	1										-
LI RD		-	1										-
3AKA													
F04 E		-	1								i i	i i	
14015		-	-										-
805		3.0-											
Pog		J.U -											
- 10LE							i						
DM EST	DISTURE &	GROUN	IDWATE	R	SAMPLES & FIELD TESTS CONS	SISTENCY	RELATIVE DE	INSITY	R	OCK S	TREN	GTH	ROCK WEATHERING
P N	- Dry - Moist					- Very Soft	VL - Very L		E	EL - E	Extrem /ery lo	ely lov	
ARDN M	- Wet /C - Optin		c		ES - Environmental sample F -	- Soft - Firm	L - Loose MD - Mediu	im Dens	e L	- L	-OW		XW - Extremely weathered DW - Distinctly weathered
	- Plast	ic Limit				 Stiff Very Stiff 	D - Dense VD - Very D		H	n - P I - F	/lediun High /ery hi	1	SW - Slightly weathered FR - Fresh rock
רם ער וי	Wate - Wate	r seepa r level	age/inflo	N		- Very Stiff - Hard	v - very L	20136	E	Ή - \ Η - Ε	/ery hi Extrem	gh ely hig	
GEOTECH.GLB L0g CARDNO_TESTHOLE_LOG 80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/1/12015 09:23 8.30.00 중 없 없	Explanator	v Note	s for		I		·						1
deta	ils of abbre	viation	IS		CA	ARDNO	LTD						
ш & ba	asis of desc	ription	S.										

APPENDIX

LABORATORY TESTING

				BT	EX					TPH					CRC Ca	re TPH F	ractions	;										PAH						
	Vic EPA IWRG 621 Other OCP (Total)*	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	co - co	C10 - C14	C15 - C28	C29-C36	+C10 - C36 (Sum of total)	62-93	C10-C16	C16-C34	C34-C40	C10 - C40 (Sum of total)	F1: C6-C10 less BTEX	F2: >C10-C16 less Naphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	Benzo(b+j)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	PAHs (Sum of total)
	MG/KG	i mg/kg	mg/kg	mg/kg	mg/kg	mg/kg m	ng/kg r	mg/kg	mg/kg	mg/kg	mg/kg	g mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg n	ng/kg r	ng/kg
EQL	0.1	0.1	0.1	0.1	0.2	0.1	0.3	20	20	50	50	50	20	50	100	100	100	20	50	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
0-1m CRCCARE 2011 Soil HSL for Direct Contact, HSL-A Residential		100	14000	4500		1	2000						4400	3300	4500	6300																	1400	
0-2m NEPM 2013 EIL UR/POS, low pH, CEC, clay content - aged																																	170	
0-2m NEPM 2013 ESL UR/POS, Coarse Soil		50	85	70			105		120					120	300	2800		180						0.7										
NEPM 2013 HIL, Residential A																																		300
0-1m NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Sand		0.5	160	55			40											45	110														3	
1-2m		0.5	220	NL			60											70	240														NL	
2-4m		0.5	310	NL			95											110	440														NL	
>4m		0.5	540	NL			170											200	NL														NL	
NEPM 2013 Management Limits, R/P&POS, Coarse Soil								700	1000				700	1000	2500	10000																		
Field_ID Location_Code Sample_Depth_Range Sampled_Date_Time Matrix_Description																																		

Field_ID	Location_Code	Sample_Depth_Range	Sampled_Date_Time Matrix_Description																																				
DUP1	ES3		14/10/2021	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<50	<50	<50	<20	<50	<100	<100	<100	<20	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ES1	ES1		14/10/2021	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<50	65	65	<20	<50	<100	<100	<100	<20	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ES2	ES2		14/10/2021	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<50	71	71	<20	<50	<100	<100	<100	<20	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ES3	ES3		14/10/2021	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<50	<50	<50	<20	<50	<100	<100	<100	<20	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TB005-1	TB005-1		20/10/2015	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1
TB006-1	TB006-1		20/10/2015	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1
TB007-1	TB007-1		20/10/2015	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1
TB008-1	TB008-1		20/10/2015	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1
TB009-1	TB009-1		20/10/2015	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1
QA1	TB009-1		20/10/2015	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1
TB010-1	TB010-1		20/10/2015	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1
TB011-1	TB011-1		20/10/2015	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1
TB012-1	TB012-1		20/10/2015	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	<20	<45	<45	<110	<25	<25	<90	<120	<210	<25	<25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.8	<0.1	<0.1

				Me	tals					Inorgai	nics								Orga	nochlori	ne Pesti	cides									0	Organoph	osph
	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Conductivity (1:5 aqueous extract)	و Moisture Content (dried @ 103°C)	pH (aqueous extract)	a-BHC	Aldrin	Aldrin + Dieldrin	Chlordane	TOO	DDT+DDE+DDD	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Methoxychlor	Toxaphene	Azinophos methyl	Chlorpyrifos	Diazinon	Dichlorvos
				g mg/кg			1		US/CM	%	pH_Units																						
EQL	2	0.4	5	5	5	0.1	5	5	10	1	0.1	0.05	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.5	0.2	0.2	0.2	0.2
0-1m CRCCARE 2011 Soil HSL for Direct Contact, HSL-A Residential			100	60												100																	
0-2m NEPM 2013 EIL UR/POS, low pH, CEC, clay content - aged	100		190	60	1100		30	70								180																	
0-2m NEPM 2013 ESL UR/POS, Coarse Soil				_																													
NEPM 2013 HIL, Residential A	100	20		6000	300	40	400	7400						6	50		240					10			6		10	300	20		160		
0-1m NEPM 2013 Soil HSL Residential A&B, for Vapour Intrusion, Sand																																	
1-2m																																	
2-4m																																	
>4m																																	
NEPM 2013 Management Limits, R/P&POS, Coarse Soil																																	

Field_ID	Location_Code Sample_Depth_Range	Sampled_Date_Time Matrix_Description																																			
DUP1	ES3	14/10/2021	3.9	<0.4	12	5.7	13	<0.1	<5	29	48	16	7	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ES1	ES1	14/10/2021	5.5	<0.4	22	22	23	<0.1	26	110	62	15	7.4	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ES2	ES2	14/10/2021	4.5	<0.4	13	16	13	<0.1	7.2	57	65	13	6.3	<0.05	<0.05	0.07	<0.1	<0.05	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ES3	ES3	14/10/2021	<2	<0.4	6.8	<5	7.4	<0.1	<5	38	45	14	7.3	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
TB005-1	TB005-1	20/10/2015	5	0.5	25	5.6	11	<0.01	2.1	13	-	19	-	<0.1	<0.1	<0.3	<0.2	<0.1	<0.3	<0.2	<0.2	<0.2	<0.3	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2
TB006-1	TB006-1	20/10/2015	3	<0.3	8.8	7.3	38	0.01	1.6	130	-	20	-	<0.1	<0.1	<0.3	<0.2	<0.1	<0.3	<0.2	<0.2	<0.2	<0.3	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2
TB007-1	TB007-1	20/10/2015	5	0.3	19	14	15	<0.01	15	120	-	13	-	<0.1	<0.1	<0.3	<0.2	<0.1	<0.3	<0.2	<0.2	<0.2	<0.3	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2
TB008-1	TB008-1	20/10/2015	<3	<0.3	1.4	0.5	<1	<0.01	<0.5	1.7	-	9.9	-	<0.1	<0.1	<0.3	<0.2	<0.1	<0.3	<0.2	<0.2	<0.2	<0.3	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2
TB009-1	TB009-1	20/10/2015	<3	<0.3	6.3	1.5	4	<0.01	0.8	43	-	17	-	<0.1	<0.1	<0.3	<0.2	<0.1	<0.3	<0.2	<0.2	<0.2	<0.3	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2
QA1	TB009-1	20/10/2015	<3	<0.3	6.5	1.6	4	<0.01	0.8	43	-	9.8	-	<0.1	<0.1	<0.3	<0.2	<0.1	<0.3	<0.2	<0.2	<0.2	<0.3	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2
TB010-1	TB010-1	20/10/2015	4	<0.3	10	3.9	12	0.01	1.6	15	-	14	-	<0.1	<0.1	<0.3	<0.2	<0.1	<0.3	<0.2	<0.2	<0.2	<0.3	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2
TB011-1	TB011-1	20/10/2015	3	<0.3	10	6.1	9	0.01	2.9	40	-	11	-	<0.1	<0.1	<0.3	<0.2	<0.1	<0.3	<0.2	<0.2	<0.2	<0.3	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2
TB012-1	TB012-1	20/10/2015	<3	<0.3	4.3	1.9	5	0.01	0.9	6.1	-	12	-	<0.1	<0.1	<0.3	<0.2	<0.1	<0.3	<0.2	<0.2	<0.2	<0.3	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2

							Pesti	icides			Polyc	chlorina	ted Biph	enyls		
					Fenitrothion	Malathion	Parathion	Pirimiphos-methyl	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Sum of total)
					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL					0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
0-1m	CRCCARE 2011	Soil HSL for Direct Conta	ct, HSL-A Residential													
0-2m	NEPM 2013 EIL	UR/POS, low pH, CEC, cla	ay content - aged													
0-2m	NEPM 2013 ESL	UR/POS, Coarse Soil														
NEPM 20	13 HIL, Residentia	I A														1
0-1m	NEPM 2013 Soil	HSL Residential A&B, for	Vapour Intrusion, Sand													
1-2m																
2-4m																
>4m																
NEPM 20	13 Management L	imits, R/P&POS, Coarse So	il													
Field_ID		Sample_Depth_Range	Sampled_Date_Time	Matrix_Description												
DUP1	ES3		14/10/2021		<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ES1	ES1	1	14/10/2021	1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		1		1												

Field_ID	Location_Code	Sample_Depth_Range	Sampled_Date_Time	Matrix_Description												
DUP1	ES3		14/10/2021		<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ES1	ES1		14/10/2021		<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ES2	ES2		14/10/2021		<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ES3	ES3		14/10/2021		<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TB005-1	TB005-1		20/10/2015		<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TB006-1	TB006-1		20/10/2015		<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TB007-1	TB007-1		20/10/2015		<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TB008-1	TB008-1		20/10/2015		<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TB009-1	TB009-1		20/10/2015		<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
QA1	TB009-1		20/10/2015		<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TB010-1	TB010-1		20/10/2015		<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TB011-1	TB011-1		20/10/2015		<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1
TB012-1	TB012-1		20/10/2015		<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1

Wathara NSW Pty Ltd

ANALYTICAL REPORT

LIENT DETAILS	ð	LABORATORY DE	TAILS
Contact	Alireza Mohiti	Manager	Huong Crawford
Client	CARDNO GEOTECH SOLUTIONS PTY LTD	Laboratory	SGS Alexandria Environmental
Address	34/205-207 Albany Street North Gosford NSW 2250	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4320 1000	Telephone	+61 2 8594 0400
Facsimile	61 2 4324 3251	Facsimile	+61 2 8594 0499
Email	alireza.mohiti@cardno.com.au	Email	au.environmental.sydney@sgs.com
Project	80514013	SGS Reference	SE145132 R0
Order Number	80514013	Date Received	22/10/2015
Samples	2	Date Reported	28/10/2015

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in soil sample using trace analysis technique as per AS 4964-2004.

Sample #1: Asbestos found in 3x2mm cement sheet fragment in >2 to <7mm fraction.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

S betitsten

Yusuf Kuthpudin Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 t +61 2 8594 0400

Fibre ID in bulk materials [AN602] Tested: 28/10/2015

			AS-2
			MATERIAL
			-
			21/10/2015
PARAMETER	UOM	LOR	SE145132.002
Asbestos Detected	No unit	-	Yes

SE145132 R0

Gravimetric Determination of Asbestos in Soil [AN605] Tested: -

			AS-1
			SOIL
			-
PARAMETER	UOM	LOR	21/10/2015 SE145132.001
Total Sample Weight*	g	1	985
ACM in >7mm Sample*	g	0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	0.0115
AF/FA in <2mm Sample*	g	0.0001	<0.0001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	0.001
Fibre Type*	No unit	-	CRY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN605	This technique gravimetrically determines the mass of Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free fibres which are only observed by standard trace analysis as per AN 602.
AN605	AMO = Amosite CRY = Chrysotile CRO = Crocidolite
AN605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009.

FOOTNOTES

- NATA accreditation does not cover the performance of this service. ** Indicative data, theoretical holding time exceeded.
- NVL IS LNR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received.

UOM LOR î↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

ontact	Alireza Mohiti	Manager	Huong Crawford
lient	CARDNO GEOTECH SOLUTIONS PTY LTD	Laboratory	SGS Alexandria Environmental
ddress	34/205-207 Albany Street North Gosford NSW 2250	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
elephone	61 2 4320 1000	Telephone	+61 2 8594 0400
acsimile	61 2 4324 3251	Facsimile	+61 2 8594 0499
imail	alireza.mohiti@cardno.com.au	Email	au.environmental.sydney@sgs.com
roject	80514013	SGS Reference	SE145132 R0
order Number	80514013	Date Received	22 Oct 2015
amples	1	Date Reported	28 Oct 2015

COMMENTS ·

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in soil sample using trace analysis technique as per AS 4964-2004.

Sample #1: Asbestos found in 3x2mm cement sheet fragment in >2 to <7mm fraction.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

bititan S.

Yusuf Kuthpudin Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 www.sgs.com.au

f +61 2 8594 0499

ANALYTICAL REPORT

Laboratory Client Matrix Sample Date Sampled Fibre Identification	Ellen el la confette el forma			
Fibre ID in bulk materials Method AN602		 Sample	 	

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).

FOOTNOTES

Amosite	-	Brown Asbestos	NA	-	Not Analysed
Chrysotile	-	White Asbestos	LNR	-	Listed, Not Required
Crocidolite	-	Blue Asbestos	*	-	NATA accreditation does not cover the performance of this service.
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS	S	LABORATORY DE	TAILS
Contact	Alireza Mohiti	Manager	Huong Crawford
Client	CARDNO GEOTECH SOLUTIONS PTY LTD	Laboratory	SGS Alexandria Environmental
Address	34/205-207 Albany Street North Gosford NSW 2250	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4320 1000	Telephone	+61 2 8594 0400
Facsimile	61 2 4324 3251	Facsimile	+61 2 8594 0499
Email	alireza.mohiti@cardno.com.au	Email	au.environmental.sydney@sgs.com
Project	80514013	SGS Reference	SE145133 R0
Order Number	80514013	Date Received	22/10/2015
Samples	13	Date Reported	28/10/2015

- COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Dong Liang Metals/Inorganics Team Leader

kinter

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

ANALYTICAL RESULTS

SE145133 R0

VOC's in Soil [AN433/AN434] Tested: 25/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6

			QA1	TB011-1	TB007-1	TB008-1	Trip Blank
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011	SE145133.012
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6

			Trip Spike SOIL - 20/10/2015
PARAMETER	UOM	LOR	SE145133.013
Benzene	mg/kg	0.1	[92%]
Toluene	mg/kg	0.1	[100%]
Ethylbenzene	mg/kg	0.1	[98%]
m/p-xylene	mg/kg	0.2	[98%]
o-xylene	mg/kg	0.1	[99%]
Naphthalene	mg/kg	0.1	-
Total Xylenes*	mg/kg	0.3	-
Total BTEX*	mg/kg	0.6	-

Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410] Tested: 25/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	20/10/2015 SE145133.008	20/10/2015 SE145133.009	20/10/2015 SE145133.010	20/10/2015 SE145133.011
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

ANALYTICAL RESULTS

SE145133 R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN403]

Tested: 23/10/2015	Tes	ted:	23/	10	201	15
--------------------	-----	------	-----	----	-----	----

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/10/2015	- 20/10/2015	- 20/10/2015	- 20/10/2015	- 20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
			- 20/10/2015	- 20/10/2015	- 20/10/2015	- 20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 23/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 3012			-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			QA1	TB011-1	TB007-1	TB008-1
			0.01		00"	00"
			SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8

Speciated Phenols in Soil [AN420] Tested: 23/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	20/10/2015 SE145133.003	20/10/2015 SE145133.004	20/10/2015 SE145133.005	20/10/2015 SE145133.006	20/10/2015 SE145133.007
Phenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-methyl phenol (o-cresol)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
3/4-methyl phenol (m/p-cresol)	mg/kg	1	<1	<1	<1	<1	<1
Total Cresol	mg/kg	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
2-chlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-dimethylphenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-dichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-dichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,6-trichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-nitrophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-nitrophenol	mg/kg	1	<1	<1	<1	<1	<1
2,4,5-trichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,3,4,6/2,3,5,6-tetrachlorophenol	mg/kg	1	<1	<1	<1	<1	<1
Pentachlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-dinitrophenol	mg/kg	2	<2	<2	<2	<2	<2
4-chloro-3-methylphenol	mg/kg	2	<2	<2	<2	<2	<2

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	20/10/2015 SE145133.008	20/10/2015 SE145133.009	20/10/2015 SE145133.010	20/10/2015 SE145133.011
Phenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2-methyl phenol (o-cresol)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
3/4-methyl phenol (m/p-cresol)	mg/kg	1	<1	<1	<1	<1
Total Cresol	mg/kg	1.5	<1.5	<1.5	<1.5	<1.5
2-chlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,4-dimethylphenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,6-dichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,4-dichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,4,6-trichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2-nitrophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
4-nitrophenol	mg/kg	1	<1	<1	<1	<1
2,4,5-trichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,3,4,6/2,3,5,6-tetrachlorophenol	mg/kg	1	<1	<1	<1	<1
Pentachlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,4-dinitrophenol	mg/kg	2	<2	<2	<2	<2
4-chloro-3-methylphenol	mg/kg	2	<2	<2	<2	<2

OC Pesticides in Soil [AN400/AN420] Tested: 23/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
PARAMETER	UOM	LOR	20/10/2015 SE145133.003	20/10/2015 SE145133.004	20/10/2015 SE145133.005	20/10/2015 SE145133.006	20/10/2015 SE145133.007
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

ANALYTICAL RESULTS

OC Pesticides in Soil [AN400/AN420] Tested: 23/10/2015 (continued)

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	20/10/2015 SE145133.008	20/10/2015 SE145133.009	20/10/2015 SE145133.010	20/10/2015 SE145133.011
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1

OP Pesticides in Soil [AN400/AN420] Tested: 23/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
PARAMETER	UOM	LOR	SOIL - 20/10/2015 SE145133.003	SOIL - 20/10/2015 SE145133.004	SOIL - 20/10/2015 SE145133.005	SOIL - 20/10/2015 SE145133.006	SOIL - 20/10/2015 SE145133.007
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2

ANALYTICAL RESULTS

SE145133 R0

PCBs in Soil [AN400/AN420] Tested: 23/10/2015

			TB012-1 TB006-1		TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1

pH in soil (1:2) [AN101] Tested: 27/10/2015

			TB008 (1.8-2.0)	TB013-1	TB012-1	TB006-1
			SOIL	SOIL	SOIL	SOIL
						-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.001	SE145133.002	SE145133.003	SE145133.004
pH (1:2)	pH Units	-	4.4	5.3	5.2	5.0

Conductivity (1:2) in soil [AN106] Tested: 27/10/2015

			TB008 (1.8-2.0)	TB013-1	TB012-1	TB006-1
			SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.001	SE145133.002	SE145133.003	SE145133.004
Conductivity (1:2) @25 C*	µS/cm	1	150	170	140	50
Resistivity (1:2)*	ohm cm	-	6700	5900	7100	20000

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography [AN245] Tested: 26/10/2015

			TB008 (1.8-2.0)	TB013-1	TB012-1	TB006-1
			SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.001	SE145133.002	SE145133.003	SE145133.004
Chloride	mg/kg	0.25	9.6	73	48	8.7
Sulphate	mg/kg	0.5	120	36	25	9.8

Total Recoverable Metals in Soil by ICPOES [AN040/AN320] Tested: 27/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/10/2015	- 20/10/2015	- 20/10/2015	- 20/10/2015	- 20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Arsenic, As	mg/kg	3	<3	3	5	<3	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.5	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	4.3	8.8	25	6.3	10
Copper, Cu	mg/kg	0.5	1.9	7.3	5.6	1.5	3.9
Lead, Pb	mg/kg	1	5	38	11	4	12
Nickel, Ni	mg/kg	0.5	0.9	1.6	2.1	0.8	1.6
Zinc, Zn	mg/kg	0.5	6.1	130	13	43	15

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	20/10/2015 SE145133.008	20/10/2015 SE145133.009	20/10/2015 SE145133.010	20/10/2015 SE145133.011
Arsenic, As	mg/kg	3	<3	3	5	<3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.3	<0.3
Chromium, Cr	mg/kg	0.3	6.5	10	19	1.4
Copper, Cu	mg/kg	0.5	1.6	6.1	14	0.5
Lead, Pb	mg/kg	1	4	9	15	<1
Nickel, Ni	mg/kg	0.5	0.8	2.9	15	<0.5
Zinc, Zn	mg/kg	0.5	43	40	120	1.7

SE145133 R0

Mercury in Soil [AN312] Tested: 27/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Mercury	mg/kg	0.01	0.01	0.01	<0.01	<0.01	0.01

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
						-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011
Mercury	mg/kg	0.01	<0.01	0.01	<0.01	<0.01

SE145133 R0

Moisture Content [AN002] Tested: 25/10/2015

			TB008 (1.8-2.0)	TB013-1	TB012-1	TB006-1	TB005-1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.001	SE145133.002	SE145133.003	SE145133.004	SE145133.005
% Moisture	%w/w	0.5	19	20	13	9.9	17

			TB009-1	TB010-1	QA1	TB011-1	TB007-1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.006	SE145133.007	SE145133.008	SE145133.009	SE145133.010
% Moisture	%w/w	0.5	9.8	14	11	12	16

			TB008-1	Trip Blank
			SOIL	SOIL
			- 20/10/2015	- 20/10/2015
PARAMETER	UOM	LOR	SE145133.011	SE145133.012
% Moisture	%w/w	0.5	6.2	<0.5

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:2 and the pH determined and reported on the extract after 1 hour extraction (pH 1:2) or after 1 hour extraction and overnight aging (pH (1:2) aged). Reference APHA 4500-H+.
AN106	Conductivity : Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:2 and the EC determined and reported on the extract basis after the 1 hour extraction (EC(1:2)) or after the 1 hour extraction and overnight aging (EC(1:2) aged). Reference APHA 2510 B.
AN106	Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis.
AN245	Anions by Ion Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded. -NVL IS LNR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM LOR ↑↓

 I Unit of Measure.
 Limit of Reporting.
 Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Alireza Mohiti	Manager	Huong Crawford
Client	CARDNO GEOTECH SOLUTIONS PTY LTD	Laboratory	SGS Alexandria Environmental
Address	34/205-207 Albany Street North Gosford NSW 2250	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4320 1000	Telephone	+61 2 8594 0400
Facsimile	61 2 4324 3251	Facsimile	+61 2 8594 0499
Email	alireza.mohiti@cardno.com.au	Email	au.environmental.sydney@sgs.com
Project	80514013	SGS Reference	SE145133 R0
Order Number	80514013	Date Received	22 Oct 2015
Samples	13	Date Reported	28 Oct 2015

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received 13 Soil 22/10/2015 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 20°C Standard Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

								ME-(AU)-[ENV]AN10
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB008 (1.8-2.0)	SE145133.001	LB088261	20 Oct 2015	22 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015
TB013-1	SE145133.002	LB088261	20 Oct 2015	22 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015
TB012-1	SE145133.003	LB088261	20 Oct 2015	22 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015
TB006-1	SE145133.004	LB088261	20 Oct 2015	22 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015
								ME-(AU)-[ENV]AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB012-1	SE145133.003	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB006-1	SE145133.004	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB005-1	SE145133.005	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB009-1	SE145133.006	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB010-1	SE145133.007	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
QA1	SE145133.008	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB011-1	SE145133.009	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB007-1	SE145133.010	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB008-1	SE145133.011	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
								ME-(AU)-[ENV]AN00
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB008 (1.8-2.0)	SE145133.001	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB013-1	SE145133.002	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB012-1	SE145133.003	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB006-1	SE145133.004	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB005-1	SE145133.005	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB009-1	SE145133.006	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB010-1	SE145133.007	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
QA1	SE145133.008	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB011-1	SE145133.009	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB007-1	SE145133.010	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB008-1	SE145133.011	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
Trip Blank	SE145133.012	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
DC Pesticides in Soil)-[ENV]AN400/AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB012-1	SE145133.003	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB006-1	SE145133.004	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB005-1 TB009-1	SE145133.005	LB088018 LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB010-1	SE145133.006 SE145133.007	LB088018	20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015	23 Oct 2015 23 Oct 2015	02 Dec 2015 02 Dec 2015	28 Oct 2015 28 Oct 2015
QA1	SE145133.007	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB011-1	SE145133.009	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB007-1	SE145133.010	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB008-1	SE145133.011	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
OP Pesticides in Soil	02110100.011	22000010	20 000 2010	22 00(2010	0011072010	20 000 2010)-[ENV]AN400/AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB012-1	SE145133.003	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB006-1	SE145133.003	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB005-1	SE145133.005	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB009-1	SE145133.006	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB010-1	SE145133.007	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
QA1	SE145133.008	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB011-1	SE145133.009	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB007-1	SE145133.010	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB008-1	SE145133.011	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
	ic Hydrocarbons) in Soil							ME-(AU)-[ENV]AN42
PAH (Polynuclear Aromati			Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
	Sample No.	QC Ref					, 0 0 0 0 0 0	
Sample Name	Sample No. SE145133.003	QC Ref LB088018		22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
PAH (Polynuclear Aromati Sample Name TB012-1 TB006-1	SE145133.003	LB088018	20 Oct 2015	22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015	23 Oct 2015 23 Oct 2015	02 Dec 2015 02 Dec 2015	28 Oct 2015 28 Oct 2015
Sample Name				22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015	23 Oct 2015 23 Oct 2015 23 Oct 2015		28 Oct 2015 28 Oct 2015 28 Oct 2015

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
B010-1	SE145133.007	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
QA1	SE145133.008	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B011-1	SE145133.009	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B007-1	SE145133.010	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B008-1	SE145133.011	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
								J)-[ENV]AN400/AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
B012-1	SE145133.003	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B006-1	SE145133.004	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B005-1	SE145133.005	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B009-1	SE145133.006	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B010-1	SE145133.007	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
A1	SE145133.008	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B011-1	SE145133.009	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B007-1	SE145133.010	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B008-1	SE145133.011	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
in soil (1:2)								ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3008 (1.8-2.0)	SE145133.001	LB088260	20 Oct 2015	22 Oct 2015	27 Oct 2015	27 Oct 2015	28 Oct 2015	27 Oct 2015
B008 (1.8-2.0) B013-1	SE145133.001	LB088260						
B012-1		LB088260	20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015	27 Oct 2015 27 Oct 2015	27 Oct 2015	28 Oct 2015	27 Oct 2015
B006-1	SE145133.003 SE145133.004	LB088260	20 Oct 2015	22 Oct 2015	27 Oct 2015	27 Oct 2015 27 Oct 2015	28 Oct 2015 28 Oct 2015	27 Oct 2015 27 Oct 2015
			20 001 2015	22 001 2015	27 001 2015	27 001 2013		
	om 1:2 DI Extract by Ion Chr	5 1 7						ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3008 (1.8-2.0)	SE145133.001	LB088190	20 Oct 2015	22 Oct 2015	27 Oct 2015	26 Oct 2015	23 Nov 2015	28 Oct 2015
B013-1	SE145133.002	LB088190	20 Oct 2015	22 Oct 2015	27 Oct 2015	26 Oct 2015	23 Nov 2015	28 Oct 2015
B012-1	SE145133.003	LB088190	20 Oct 2015	22 Oct 2015	27 Oct 2015	26 Oct 2015	23 Nov 2015	28 Oct 2015
B006-1	SE145133.004	LB088190	20 Oct 2015	22 Oct 2015	27 Oct 2015	26 Oct 2015	23 Nov 2015	28 Oct 2015
peciated Phenols in So								ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
B012-1	SE145133.003	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
3006-1	SE145133.004	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B005-1	SE145133.005	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
D000 /		LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B009-1	SE145133.006	EB000010						
	SE145133.006 SE145133.007	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B010-1			20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015	23 Oct 2015 23 Oct 2015	02 Dec 2015 02 Dec 2015	28 Oct 2015 28 Oct 2015
B010-1 A1	SE145133.007	LB088018						
B010-1 A1 B011-1	SE145133.007 SE145133.008	LB088018 LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
B010-1 A1 B011-1 B007-1	SE145133.007 SE145133.008 SE145133.009	LB088018 LB088018 LB088018	20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015	23 Oct 2015 23 Oct 2015	02 Dec 2015 02 Dec 2015	28 Oct 2015 28 Oct 2015
B010-1 A1 B011-1 B007-1 B008-1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011	LB088018 LB088018 LB088018 LB088018 LB088018	20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015	23 Oct 2015 23 Oct 2015 23 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015
8010-1 A1 8011-1 8007-1 8008-1 Ial Recoverable Metal	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011	LB088018 LB088018 LB088018 LB088018 LB088018	20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015	23 Oct 2015 23 Oct 2015 23 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015	28 Oct 2015 28 Oct 2015 28 Oct 2015
B010-1 A1 B011-1 B007-1 B008-1 Ital Recoverable Metal ample Name	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 SE145133.011 s in Soil by ICPOES	LB088018 LB088018 LB088018 LB088018 LB088018	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Mothod: ME-(AL	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 J>-[ENV]AN0-10:AN
8010-1 (A1 8011-1 8007-1 8008-1 stal Recoverable Metal ample Name 8012-1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 s in Soil by ICPOES Sample No.	LB088018 LB088018 LB088018 LB088018 LB088018 QC Ref	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 Sampled	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 Received	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 Extracted	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AL Analysis Due	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 5-[ENV]AN040/AN Analysed
B010-1 A1 B011-1 B007-1 B008-1 Ital Recoverable (Metal ample Name B012-1 B006-1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 s in Soil by ICPOES Sample No. SE145133.003	LB088018 LB088018 LB088018 LB088018 LB088018 QC Ref LB088227	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 Sampled 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 Received 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 Extracted 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AL Analysis Due 17 Apr 2016	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 D-(ENV)ANO-10 AN Analysed 28 Oct 2015
B010-1 A1 B011-1 B007-1 B008-1 Ital Recoverable Metal ample Name B012-1 B006-1 B005-1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 SE145133.011 s in Soil by ICPOES Sample No. SE145133.003 SE145133.004	LB088018 LB088018 LB088018 LB088018 LB088018 QC Ref LB088227 LB088227	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 Sampled 20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 Received 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 Apr 2016	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 Extracted 27 Oct 2015 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Mathod: ME-(AL Analysis Due 17 Apr 2016 17 Apr 2016	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 D-[ENV]ANO-10 AN Analysed 28 Oct 2015 28 Oct 2015
8010-1 A1 B011-1 B007-1 B008-1 Ial Recoverable Metal ample Name B012-1 B006-1 B005-1 B009-1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 SE145133.011 s in Soil by ICPOES Sample No. SE145133.003 SE145133.004	LB088018 LB088018 LB088018 LB088018 LB088018 QC Ref LB088227 LB088227 LB088227	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 Sampled 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 Apr 2016 17 Apr 2016	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 Extracted 27 Oct 2015 27 Oct 2015 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AL Analysis Due 17 Apr 2016 17 Apr 2016 17 Apr 2016	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 38 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015
8010-1 A1 B011-1 B007-1 B008-1 Ial Recoverable Metal ample Name B012-1 B006-1 B005-1 B009-1 B010-1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 SE145133.011 s in Soil by ICPOES Sample No. SE145133.003 SE145133.004 SE145133.005 SE145133.006	LB088018 LB088018 LB088018 LB088018 LB088018 QC Ref LB088227 LB088227 LB088227 LB088227	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Mothod: ME-(AL Analysis Due 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015
3010-1 A1 3011-1 3008-1 Ial Recoverable Metal ample Name 3012-1 3006-1 3005-1 3009-1 3010-1 A1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.010 SE145133.011 s in Soil by ICPOES Sample No. SE145133.003 SE145133.004 SE145133.005 SE145133.006 SE145133.007	LB088018 LB088018 LB088018 LB088018 LB088018 LB088018 QC Ref LB088227 LB088227 LB088227 LB088227 LB088227	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AL Analysis Due 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015
3010-1 A1 3011-1 3007-1 3008-1 Annot a coverable Metal ample Name 3012-1 3006-1 3006-1 3009-1 3010-1 A1 3011-1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 SE145133.011 s in Soil by ICPOES Sample No. SE145133.003 SE145133.004 SE145133.005 SE145133.006 SE145133.007 SE145133.008	LB088018 LB088018 LB088018 LB088018 LB088018 CC Ref LB088227 LB088227 LB088227 LB088227 LB088227 LB088227	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AU Analysis Due 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015
3010-1 A1 3011-1 3007-1 3008-1 Annote the function ample Name 3012-1 3006-1 3006-1 3009-1 3010-1 A1 3011-1 3007-1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 SE145133.011 s in Soil by ICPOES Sample No. SE145133.003 SE145133.004 SE145133.005 SE145133.006 SE145133.007 SE145133.008 SE145133.009	LB088018 LB088018 LB088018 LB088018 LB088018 CC Ref LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AU Analysis Due 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015
8010-1 A1 B011-1 B007-1 B008-1 Al Recoverable Metal ample Name B012-1 B006-1 B006-1 B009-1 B010-1 A1 B011-1 B007-1 B008-1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 SE145133.011 s in Soil by ICPOES Sample No. SE145133.003 SE145133.004 SE145133.005 SE145133.006 SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011	LB088018 LB088018 LB088018 LB088018 LB088018 CC Ref LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016 17 Apr 2016	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AU Analysis Due 17 Apr 2016 17 Apr 2016	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015
3010-1 A1 3011-1 3007-1 3008-1 tal Recoverable Metal ample Name 3012-1 3006-1 3006-1 3009-1 3010-1 A1 3010-1 A1 3007-1 3008-1 3008-1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.010 SE145133.010 SE145133.010 SE145133.011 s in Soil by ICPOES Sample No. SE145133.003 SE145133.004 SE145133.005 SE145133.006 SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 Hydrocarbons) in Soil	LB088018 LB088018 LB088018 LB088018 LB088018 LB088018 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 Apr 2016	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AL Analysis Due 17 Apr 2016 17 Apr 2016	28 Oct 2015 28 Oct 2015
8010-1 A1 B011-1 B007-1 B008-1 tal Recoverable Metal ample Name B012-1 B006-1 B006-1 B009-1 B009-1 B010-1 A1 B010-1 A1 B007-1 B008-1 R008-1 B008-1 B008-1 B008-1 B008-1	SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.010 SE145133.010 SE145133.010 SE145133.011 s in Soil by ICPOES Sample No. SE145133.003 SE145133.004 SE145133.005 SE145133.006 SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 Hydrocarbons) in Soil Sample No.	LB088018 LB088018 LB088018 LB088018 LB088018 LB088018 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227	20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 Apr 2016	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AL Analysis Due 17 Apr 2016 17 hod. Analysis Due	28 Oct 2015 28 Oct 2015
8010-1 A1 B011-1 B007-1 B008-1 Constant Recoverable Metal ample Name B012-1 B006-1 B009-1 B010-1 A1 B010-1 A1 B011-1 B008-1 B008-1 Constant Recoverable ample Name B012-1	SE145133.007 SE145133.008 SE145133.009 SE145133.009 SE145133.010 SE145133.010 SE145133.011 s m Soil by ICPOES Sample No. SE145133.003 SE145133.003 SE145133.004 SE145133.005 SE145133.006 SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 Hychocarbons) in Sol Sample No. SE145133.003	LB088018 LB088018 LB088018 LB088018 LB088018 LB088018 QC Ref LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 7 2018 Extraction Due 03 Nov 2015	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AL Analysis Due 17 Apr 2016 17 Apr 2016 017 Apr 2016 017 Apr 2016 02 Dec 2015	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015
B010-1 A1 B011-1 B007-1 B008-1 All Recoverable Metal B008-1 B012-1 B006-1 B009-1 B010-1 A1 B010-1 A1 B011-1 B008-1 CTAL Recoverable ample Name B012-1 B006-1	SE145133.007 SE145133.008 SE145133.009 SE145133.009 SE145133.010 SE145133.010 SE145133.011 s in Soil by ICPOES Sample No. SE145133.003 SE145133.003 SE145133.004 SE145133.005 SE145133.006 SE145133.007 SE145133.008 SE145133.009 SE145133.009 SE145133.010 SE145133.011 Hydrocarbons) in Sol Sample No. SE145133.003 SE145133.003 SE145133.003	LB088018 LB088018 LB088018 LB088018 LB088018 LB088018 QC Ref LB088227 LB08828 LB088018 LB088018 LB088018	20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 Nov 2015 03 Nov 2015	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AU Analysis Due 17 Apr 2016 17 Apr 2016 Method Analysis Due 02 Dec 2015 02 Dec 2015	28 Oct 2015 28 Oc
B009-1 B010-1 B010-1 B007-1 B008-1 B008-1 B006-1 B000-1 B010-1 DA1 B001-1 B010-1 SA1 B001-1 B010-1 SA1 B001-1 B010-1 SA1 B010-1 SA1 B001-1 B011-1 B002-1 B002-1 B002-1 B012-1 B012-1 B005-1 B005-1 B005-1 B005-1 B005-1 B005-1	SE145133.007 SE145133.008 SE145133.009 SE145133.009 SE145133.010 SE145133.010 SE145133.011 s m Soil by ICPOES Sample No. SE145133.003 SE145133.003 SE145133.004 SE145133.005 SE145133.006 SE145133.007 SE145133.008 SE145133.009 SE145133.010 SE145133.011 Hychocarbons) in Sol Sample No. SE145133.003	LB088018 LB088018 LB088018 LB088018 LB088018 LB088018 QC Ref LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227 LB088227	20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 03 Nov 2015 Extraction Due 17 Apr 2016 17 7 2018 Extraction Due 03 Nov 2015	23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 23 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015 27 Oct 2015	02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 02 Dec 2015 Method: ME-(AL Analysis Due 17 Apr 2016 17 Apr 2016 017 Apr 2016 017 Apr 2016 02 Dec 2015	28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015 28 Oct 2015

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed QA1 SE145133.008 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB011-1 SE145133.009 LB088018 22 Oct 2015 03 Nov 2015 02 Dec 2015 28 Oct 2015 20 Oct 2015 23 Oct 2015 TB007-1 SE145133.010 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB008-1 LB088018 SE145133.011 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 Analysis Due Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysed TB012-1 SE145133.003 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 SE145133.004 TB006-1 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB005-1 SE145133.005 I B088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB009-SE145133.006 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB010-1 SE145133.007 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 QA1 SE145133.008 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB011-1 SE145133.009 20 Oct 2015 22 Oct 2015 04 Dec 2015 LB088081 03 Nov 2015 25 Oct 2015 28 Oct 2015 TB007-1 SE145133.010 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB008-1 SE145133.011 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 SE145133.012 04 Dec 2015 Trip Blank LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 28 Oct 2015 Trip Spike SE145133.013 I B088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 Analysis Due Sample Name QC Ref Sampled Received Extraction Due Extracted Analysed Sample No. TB012-1 SE145133.003 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB006-1 SE145133.004 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB005-1 22 Oct 2015 04 Dec 2015 SE145133.005 LB088081 20 Oct 2015 03 Nov 2015 25 Oct 2015 28 Oct 2015 TB009-1 SE145133.006 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015

22 Oct 2015

22 Oct 2015

22 Oct 2015

22 Oct 2015

22 Oct 2015

22 Oct 2015

22 Oct 2015

03 Nov 2015

03 Nov 2015

03 Nov 2015

03 Nov 2015

03 Nov 2015

03 Nov 2015

03 Nov 2015

25 Oct 2015

25 Oct 2015

25 Oct 2015

25 Oct 2015

25 Oct 2015

25 Oct 2015

25 Oct 2015

04 Dec 2015

04 Dec 2015

04 Dec 2015

04 Dec 2015

04 Dec 2015

04 Dec 2015

04 Dec 2015

28 Oct 2015

28 Oct 2015

28 Oct 2015

28 Oct 2015

28 Oct 2015

28 Oct 2015

28 Oct 2015

TB010-1

TB011-1

TB007-1

TB008-1

Trip Blank

Trip Spike

QA1

SE145133.007

SE145133.008

SE145133.009

SE145133.010

SE145133 011

SE145133.012

SE145133.013

LB088081

LB088081

LB088081

LB088081

I B088081

LB088081

LB088081

20 Oct 2015

20 Oct 2015

20 Oct 2015

20 Oct 2015

20 Oct 2015

20 Oct 2015

20 Oct 2015

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

					[ENV]AN400/AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	99
	TB006-1	SE145133.004	%	60 - 130%	96
	TB005-1	SE145133.005	%	60 - 130%	97
	TB009-1	SE145133.006	%	60 - 130%	92
	TB010-1	SE145133.007	%	60 - 130%	97
	QA1	SE145133.008	%	60 - 130%	100
	TB011-1	SE145133.009	%	60 - 130%	99
	TB007-1	SE145133.010	%	60 - 130%	98
	TB008-1	SE145133.011	%	60 - 130%	100
OP Pesticides in Soil					(ENVJAN400/AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	84
	TB006-1	SE145133.004	%	60 - 130%	84
	TB005-1	SE145133.005	%	60 - 130%	88
	TB009-1	SE145133.006	%	60 - 130%	86
	TB010-1	SE145133.007	%	60 - 130%	80
	QA1	SE145133.008	%	60 - 130%	84
	TB011-1	SE145133.009	%	60 - 130%	84
	TB007-1	SE145133.010	%	60 - 130%	80
	TB008-1	SE145133.011	%	60 - 130%	82
d14-p-terphenyl (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	104
	TB006-1	SE145133.004	%	60 - 130%	106
	TB005-1	SE145133.005	%	60 - 130%	110
	TB009-1	SE145133.006	%	60 - 130%	110
	TB010-1	SE145133.007	%	60 - 130%	100
	QA1	SE145133.008	%	60 - 130%	108
	TB011-1	SE145133.009	%	60 - 130%	108
	TB007-1	SE145133.010	%	60 - 130%	104
	TB008-1	SE145133.011	%	60 - 130%	104

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	TB012-1	SE145133.003	%	70 - 130%	84
	TB006-1	SE145133.004	%	70 - 130%	84
	TB005-1	SE145133.005	%	70 - 130%	88
	TB009-1	SE145133.006	%	70 - 130%	86
	TB010-1	SE145133.007	%	70 - 130%	80
	QA1	SE145133.008	%	70 - 130%	84
	TB011-1	SE145133.009	%	70 - 130%	84
	TB007-1	SE145133.010	%	70 - 130%	80
	TB008-1	SE145133.011	%	70 - 130%	82
d14-p-terphenyl (Surrogate)	TB012-1	SE145133.003	%	70 - 130%	104
	TB006-1	SE145133.004	%	70 - 130%	106
	TB005-1	SE145133.005	%	70 - 130%	110
	TB009-1	SE145133.006	%	70 - 130%	110
	TB010-1	SE145133.007	%	70 - 130%	100
	QA1	SE145133.008	%	70 - 130%	108
	TB011-1	SE145133.009	%	70 - 130%	108
	TB007-1	SE145133.010	%	70 - 130%	104
	TB008-1	SE145133.011	%	70 - 130%	104
d5-nitrobenzene (Surrogate)	TB012-1	SE145133.003	%	70 - 130%	80
	TB006-1	SE145133.004	%	70 - 130%	90
	TB005-1	SE145133.005	%	70 - 130%	86
	TB009-1	SE145133.006	%	70 - 130%	88
	TB010-1	SE145133.007	%	70 - 130%	78
	QA1	SE145133.008	%	70 - 130%	82
	TB011-1	SE145133.009	%	70 - 130%	80
	TB007-1	SE145133.010	%	70 - 130%	78
	TB008-1	SE145133.011	%	70 - 130%	78

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

rameter	Sample Name	Sample Number	Units	Criteria	Recovery
etrachloro-m-xylene (TCMX) (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	99
	TB006-1	SE145133.004	%	60 - 130%	96
	TB005-1	SE145133.005	%	60 - 130%	97
	TB009-1	SE145133.006	%	60 - 130%	92
	TB010-1	SE145133.007	%	60 - 130%	97
	QA1	SE145133.008	%	60 - 130%	100
	TB011-1	SE145133.009	%	60 - 130%	99
	TB007-1	SE145133.010	%	60 - 130%	98
	TB008-1	SE145133.011	%	60 - 130%	100
					E-(AU)-[ENV]/
rameter	Sample Name	Sample Number	Units	Criteria	Recovery
4,6-Tribromophenol (Surrogate)	TB012-1	SE145133.003	%	70 - 130%	96
	TB006-1	SE145133.004	%	70 - 130%	95
	TB005-1	SE145133.005	%	70 - 130%	93
	TB009-1	SE145133.006	%	70 - 130%	91
	TB010-1	SE145133.007	%	70 - 130%	91
	QA1	SE145133.008	%	70 - 130%	90
	TB011-1	SE145133.009	%	70 - 130%	93
	TB007-1	SE145133.010	%	70 - 130%	90
	TB008-1	SE145133.011	%	70 - 130%	88
-phenol (Surrogate)	TB012-1	SE145133.003	%	50 - 130%	78
	TB006-1	SE145133.004	%	50 - 130%	77
	TB005-1	SE145133.005	%	50 - 130%	76
	TB009-1	SE145133.006	%	50 - 130%	86
	TB010-1	SE145133.007	%	50 - 130%	87
	QA1	SE145133.008	%	50 - 130%	89
	TB011-1	SE145133.009	%	50 - 130%	84
	TB007-1	SE145133.010	%	50 - 130%	94
	TB008-1	SE145133.011	%	50 - 130%	90

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	94
	TB006-1	SE145133.004	%	60 - 130%	90
	TB005-1	SE145133.005	%	60 - 130%	90
	TB009-1	SE145133.006	%	60 - 130%	94
	TB010-1	SE145133.007	%	60 - 130%	96
	QA1	SE145133.008	%	60 - 130%	93
	TB011-1	SE145133.009	%	60 - 130%	96
	TB007-1	SE145133.010	%	60 - 130%	92
	TB008-1	SE145133.011	%	60 - 130%	95
	Trip Blank	SE145133.012	%	60 - 130%	94
	Trip Spike	SE145133.013	%	60 - 130%	105
d4-1,2-dichloroethane (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	81
	TB006-1	SE145133.004	%	60 - 130%	90
	TB005-1	SE145133.005	%	60 - 130%	87
	TB009-1	SE145133.006	%	60 - 130%	73
	TB010-1	SE145133.007	%	60 - 130%	86
	QA1	SE145133.008	%	60 - 130%	81
	TB011-1	SE145133.009	%	60 - 130%	79
	TB007-1	SE145133.010	%	60 - 130%	87
	TB008-1	SE145133.011	%	60 - 130%	80
	Trip Blank	SE145133.012	%	60 - 130%	86
	Trip Spike	SE145133.013	%	60 - 130%	77
d8-toluene (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	89
	TB006-1	SE145133.004	%	60 - 130%	103
	TB005-1	SE145133.005	%	60 - 130%	98
	TB009-1	SE145133.006	%	60 - 130%	80
	TB010-1	SE145133.007	%	60 - 130%	96
	QA1	SE145133.008	%	60 - 130%	92
	TB011-1	SE145133.009	%	60 - 130%	88

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433/AN43

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	TB007-1	SE145133.010	%	60 - 130%	95
	TB008-1	SE145133.011	%	60 - 130%	87
	Trip Blank	SE145133.012	%	60 - 130%	99
	Trip Spike	SE145133.013	%	60 - 130%	83
Dibromofluoromethane (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	76
	TB006-1	SE145133.004	%	60 - 130%	88
	TB005-1	SE145133.005	%	60 - 130%	83
	TB009-1	SE145133.006	%	60 - 130%	72
	TB010-1	SE145133.007	%	60 - 130%	84
	QA1	SE145133.008	%	60 - 130%	79
	TB011-1	SE145133.009	%	60 - 130%	75
	TB007-1	SE145133.010	%	60 - 130%	86
	TB008-1	SE145133.011	%	60 - 130%	78
	Trip Blank	SE145133.012	%	60 - 130%	86
	Trip Spike	SE145133.013	%	60 - 130%	122

Parameter Sample Name Sample Number Units Criteria Recovery % Bromofluorobenzene (Surrogate) TB012-1 SE145133.003 60 - 130% 94 % TB006-1 SE145133.004 % 60 - 130% 90 TB005-1 SE145133.005 % 60 - 130% 90 TB009-1 SE145133.006 60 - 130% 94 % TB010-1 SE145133.007 % 60 - 130% 96 QA1 SE145133.008 % 60 - 130% 93 TB011-1 SE145133.009 96 % 60 - 130% TB007-1 SE145133.010 % 60 - 130% 92 TB008-1 SE145133.011 % 60 - 130% 95 d4-1,2-dichloroethane (Surrogate) TB012-1 SE145133.003 60 - 130% % 81 TB006-1 SE145133.004 % 60 - 130% 90 TB005-1 SE145133.005 % 60 - 130% 87 TB009-1 73 SE145133.006 % 60 - 130% TB010-1 SE145133.007 60 - 130% % 86 QA1 SE145133.008 % 60 - 130% 81 TB011-1 SE145133.009 % 60 - 130% 79 TB007-1 SE145133.010 % 60 - 130% 87 TB008-1 SE145133.011 % 60 - 130% 80 d8-toluene (Surrogate) TB012-1 SE145133.003 60 - 130% 89 % TB006-1 SE145133.004 % 60 - 130% 103 TB005-1 SE145133.005 % 60 - 130% 98 TB009-1 SE145133.006 % 60 - 130% 80 TB010-1 SE145133.007 % 60 - 130% 96 QA1 SE145133.008 % 60 - 130% 92 TB011-1 SE145133.009 88 % 60 - 130% TB007-1 SE145133.010 % 60 - 130% 95 TB008-1 SE145133.011 % 60 - 130% 87 Dibromofluoromethane (Surrogate) TB012-1 SE145133.003 60 - 130% 76 % TB006-1 60 - 130% SE145133.004 % 88 TB005-1 SE145133.005 % 60 - 130% 83 72 TB009-1 SE145133.006 % 60 - 130% TB010-1 SE145133.007 % 60 - 130% 84 QA1 SE145133.008 % 60 - 130% 79 TB011-1 SE145133.009 % 60 - 130% 75 TB007-1 SE145133.010 60 - 130% % 86 TB008-1 SE145133.011 % 60 - 130% 78

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

				od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB088240.001	Mercury	mg/kg	0.01	<0.01

OC Pesticides in Soil

Sample Number	Parameter	Units	LOR	Result
B088018.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	81
Sample Number	Parameter	Units	LOR	Result
B088018.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	ma/ka	0.2	<0.2

Malathion mg/kg 0.2 <0.2		Fenitrothion	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2		Malathion	mg/kg	0.2	<0.2
Bromophos Ethyl mg/kg 0.2 <0.2 Methidathion mg/kg 0.5 <0.5		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Methidathion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Ethion mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2		Bromophos Ethyl	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 Surrogates 2-fluorobiphenyl (Surrogate) % - 92		Methidathion	mg/kg	0.5	<0.5
Surrogates 2-fluorobiphenyl (Surrogate) % - 92		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
d14-p-terphenyl (Surrogate) % - 122	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	92
		d14-p-terphenyl (Surrogate)	%	-	122
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV	PAH (Polynuclear Aromatic Hydrocarbons) in 1				od: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB088018.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

ample Number		Parameter	Units	LOR	Result
B088018.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	92
		2-fluorobiphenyl (Surrogate)	%	-	92
		d14-p-terphenyl (Surrogate)	%	-	122
					(AU)-[ENV]AN400/AN
Sample Number		Parameter	Units	LOR	Result
B088018.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	81
					od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	

				od: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB088018.001	Phenol	mg/kg	0.5	<0.5
	2-methyl phenol (o-cresol)	mg/kg	0.5	<0.5
	3/4-methyl phenol (m/p-cresol)	mg/kg	1	<1
	2-chlorophenol	mg/kg	0.5	<0.5
	2,4-dimethylphenol	mg/kg	0.5	<0.5
	2,6-dichlorophenol	mg/kg	0.5	<0.5
	2,4-dichlorophenol	mg/kg	0.5	<0.5
	2,4,6-trichlorophenol	mg/kg	0.5	<0.5
	2-nitrophenol	mg/kg	0.5	<0.5
	4-nitrophenol	mg/kg	1	<1
	2,4,5-trichlorophenol	mg/kg	0.5	<0.5
	2,3,4,6/2,3,5,6-tetrachlorophenol	mg/kg	1	<1
	Pentachlorophenol	mg/kg	0.5	<0.5
	2,4-dinitrophenol	mg/kg	2	<2
	4-chloro-3-methylphenol	mg/kg	2	<2
Surrogates	2,4,6-Tribromophenol (Surrogate)	%	-	95
	d5-phenol (Surrogate)	%	-	76
				-(AU)-[ENV]AN040/AN3
Sample Number	Parameter	Units	LOR	Result
LB088227.001	Arsenic, As	mg/kg	3	<3

LB088018.001	TRH C10-C14	 mg/kg	20	<20
Sample Number	Parameter	Units	LOR	Result
TRH (Total Recoverable Hydrocarbons) in Soil				od: ME-(AU)-[ENV]AN403
	Zinc, Zn	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Copper, Cu	mg/kg	0.5	<0.5
	Chromium, Cr	mg/kg	0.3	<0.3
	Cadmium, Cd	mg/kg	0.3	<0.3
LD000227.001	Arsenic, As	mg/kg	3	< 3

TRH C15-C28

TRH C29-C36

<45

<45

mg/kg

mg/kg

45

45

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number LOR Result Parameter Units LB088018.001 TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total mg/kg 110 <110 Sample Number Units LOR Result Parameter LB088081.001 Monocyclic Aromatic Benzene mg/kg 0.1 <0.1 Hydrocarbons Toluene 0.1 <0.1 mg/kg Ethylbenzene 0.1 <0.1 mg/kg m/p-xylene mg/kg 0.2 < 0.2 o-xylene mg/kg 0.1 <0.1 Polycyclic VOCs <0.1 Naphthalene mg/kg 0.1 Surrogates Dibromofluoromethane (Surrogate) % 90 d4-1,2-dichloroethane (Surrogate) % -99 d8-toluene (Surrogate) % 93 -Bromofluorobenzene (Surrogate) % 96 Totals Total BTEX* mg/kg 0.6 <0.6 Sample Number Parameter Units LOR Result I.B088081.001 TRH C6-C9 mg/kg 20 <20 Surrogates Dibromofluoromethane (Surrogate) % 90 d4-1,2-dichloroethane (Surrogate) % 99 d8-toluene (Surrogate) % 93

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE145133.007	LB088240.014	Mercury	mg/kg	0.01	0.01	0.02	200	0

									ENV]AN002
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE145133.004	LB088089.011		% Moisture	%w/w	0.5	9.9	8.9	41	10
SE145139.002	LB088089.022		% Moisture	%w/w	0.5	18	18	36	4
SE145150.006	LB088089.033		% Moisture	%w/w	0.5	19.2644483362		35	3
SE145150.000	LB088089.041		% Moisture	%w/w	0.5	12.7819548872		38	6
OC Pesticides in S				,,,,,,,,	0.0			AU)-[ENV]AI	
Original	Duplicate		Parameter	Units	LOR			Criteria %	RPD %
SE145133.011	LB088018.014		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
SE 143133.011	2000010.014		Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide		0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg			0	200	0
				mg/kg	0.1	<0.1			
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.147	30	2
SE145139.001	LB088018.030		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.1	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.2	<0.1	0	200	0
L			414	iliging	0.1	-0.1	v	200	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Driginal SE145139.001	Duplicate LB088018.030		Parameter p.p'-DDT Endosulfan sulphate Endrin Aldehyde	Units mg/kg mg/kg	LOR 0.1 0.1	Original <0.1	Duplicate 0	Criteria % 200	RPD %
JE 140103.001			Endosulfan sulphate			-0.1	0	200	
				підляд		<0.1	0	200	0
			Endnin / Ideniyae	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.168	30	13
		Currogatoo				0.10			
P Pesticides in Soil							Method: ME	-(AU)-[ENV]A	
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E145133.011	LB088018.014		Dichlorvos	mg/kg	0.5	<0.5	0.02	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0.01	200	0
			Fenitrothion	mg/kg	0.2	<0.2	0	200	C
			Malathion	mg/kg	0.2	<0.2	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.01	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0.02	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0.02	200	0
			Methidathion	mg/kg	0.5	<0.5	0.03	200	C
			Ethion	mg/kg	0.2	<0.2	0	200	C
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	C
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	C
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.53	30	2
E145139.001	LB088018.023		Dichlorvos	mg/kg	0.5	<0.5	0.01	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	C
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0.01	200	C
			Fenitrothion	mg/kg	0.2	<0.2	0	200	C
			Malathion	mg/kg	0.2	<0.2	0	200	C
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.01	200	C
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	C
			Bromophos Ethyl	mg/kg	0.2	<0.2	0.02	200	C
			Methidathion	mg/kg	0.5	<0.5	0	200	C
			Ethion	mg/kg	0.2	<0.2	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.42	30	2
		-	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.54	30	0

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE145133.011	LB088018.014	Naphthalene	mg/kg	0.1	<0.1	0	200	0
		2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
		1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
		Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
		Acenaphthene	mg/kg	0.1	<0.1	0	200	0
		Fluorene	mg/kg	0.1	<0.1	0	200	0
		Phenanthrene	mg/kg	0.1	<0.1	0	200	0
		Anthracene	mg/kg	0.1	<0.1	0	200	0
		Fluoranthene	mg/kg	0.1	<0.1	0	200	0
		Pyrene	mg/kg	0.1	<0.1	0	200	0
		Benzo(a)anthracene	mg/kg	0.1	<0.1	0.01	200	0
		Chrysene	mg/kg	0.1	<0.1	0	200	0
		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0	200	0
		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0	200	0
		Benzo(a)pyrene	mg/kg	0.1	<0.1	0.01	200	0
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	0
		Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	0	200	0
		Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	200	0
		Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	0	200	0
		Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
		Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
		Total PAH	mg/kg	0.8	<0.8	0.02	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original SE145133.011 SE145139.001	Duplicate LB088018.014		Parameter	Units	LOR	Original	Duplicate	Crite <u>ria %</u>	RPD
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.39	30	0
SE145139.001			2-fluorobiphenyl (Surrogate)	mg/kg	_	0.4	0.41	30	0
SE145139.001			d14-p-terphenyl (Surrogate)	mg/kg	_	0.5	0.53	30	2
5E 145 159.001	LB088018.023		Naphthalene		0.1	<0.1	0.55	200	0
	LB000010.023			mg/kg			0	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1			0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0	200	0
			Anthracene	mg/kg	0.1	<0.1	0	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Pyrene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0	200	0
			Chrysene	mg/kg	0.1	<0.1	0	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	0
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	200	0
					0.1	<0.1	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0* Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg) TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.242</td><td>134</td><td>0</td></lor=lor*<></lor=0* 	TEQ (mg/kg) TEQ (mg/kg)	0.2	<0.2	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
		-	Total PAH	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	0
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.42	30	2
CBs in Soil							Method, ME-		
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD
SE145133.011	LB088018.013		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.147	30	2
	LB088018.022		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
SE145139.001			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
SE145139.001			Arochlor 1232		0.2	<0.2	0	200	0
SE145139.001							0	200	0
SE145139.001			Araphar 1242	mg/kg			0	200	0
SE145139.001			Arochlor 1242	mg/kg	0.2	<0.2	0	200	
SE145139.001			Arochlor 1248	mg/kg mg/kg	0.2 0.2	<0.2 <0.2	0	200	0
SE145139.001			Arochlor 1248 Arochlor 1254	mg/kg mg/kg mg/kg	0.2 0.2 0.2	<0.2 <0.2 <0.2	0	200 200	0
SE145139.001			Arochlor 1248 Arochlor 1254 Arochlor 1260	mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2	0 0 0	200 200 200	0 0 0
SE145139.001			Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262	mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0 0 0 0	200 200 200 200	0 0 0
SE145139.001			Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0 0 0 0 0	200 200 200 200 200 200	0 0 0 0
SE145139.001			Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262	mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0 0 0 0	200 200 200 200	0 0 0 0
		Surrogates	Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0 0 0 0 0 0 0 0.168	200 200 200 200 200 200 200 30	0 0 0 0 0 0 13
peciated Phenols		Surrogates	Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 -	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0	0 0 0 0 0 0 0.168 Mathe	200 200 200 200 200 200 30 30	0 0 0 0 0 0 13 (ENV)A
specialed Phenols Original	Duplicate	Surrogates	Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units	0.2 0.2 0.2 0.2 0.2 0.2 1 -	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 Original	0 0 0 0 0 0.168 Methe Duplicate	200 200 200 200 200 200 30 oct. ME-(AU) Criteria %	0 0 0 0 0 13 (ENV)A RPD
peciated Phenols Original		Surrogates	Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Parameter Phenol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg	0.2 0.2 0.2 0.2 0.2 1 - - LOR 0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 Original <0.5	0 0 0 0 0.168 Methy Duplicate 0	200 200 200 200 200 30 0d. ME-(AU)- Criteria % 200	0 0 0 0 13 (ENV)A RPD 0
peciated Phenols Original	Duplicate	Surrogates	Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Parameter Phenol 2-methyl phenol (o-cresol)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - - LOR 0.5 0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 Original <0.5 <0.5	0 0 0 0 0 0.168 Metho Duplicate 0 0	200 200 200 200 200 30 0d. ME-(AU)- Criteria % 200 200	0 0 0 0 13 (ENV)A RPD 0 0
Specialed Phenols Original	Duplicate	Surrogates	Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Parameter Phenol 2-methyl phenol (o-cresol) 3/4-methyl phenol (m/p-cresol)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - - LOR 0.5 0.5 1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 Original <0.5 <0.5 <1	0 0 0 0 0 0.168 Metho Duplicate 0 0 0	200 200 200 200 200 30 00. ME-(AU) Criteria % 200 200 200	0 0 0 13 (ENV)A RPD 0 0
SE145139.001 Specialed Phenols Original SE145133.011	Duplicate	Surrogates	Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Parameter Phenol 2-methyl phenol (o-cresol)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - - LOR 0.5 0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 Original <0.5 <0.5	0 0 0 0 0 0.168 Metho Duplicate 0 0	200 200 200 200 200 30 0d. ME-(AU)- Criteria % 200 200	0 0 0 0 0 0 13
Specialed Phenols Original	Duplicate	Surrogates	Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Parameter Phenol 2-methyl phenol (o-cresol) 3/4-methyl phenol (m/p-cresol)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - - LOR 0.5 0.5 1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 Original <0.5 <0.5 <1	0 0 0 0 0 0.168 Metho Duplicate 0 0 0	200 200 200 200 200 30 00. ME-(AU) Criteria % 200 200 200	0 0 0 0 13 (ENV)A RPD 0 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
Original SE145133.011	LB088018.012		2,6-dichlorophenol		0.5	<0.5	0	200	0
5E145155.011	LB000010.012		2,4-dichlorophenol	mg/kg mg/kg	0.5	<0.5	0	200	0
			· · · · · · · · · · · · · · · · · · ·		0.5		0	200	0
			2,4,6-trichlorophenol	mg/kg		<0.5			
			2-nitrophenol	mg/kg	0.5	<0.5	0	200	0
			4-nitrophenol	mg/kg	1	<1	0	200	0
			2,4,5-trichlorophenol	mg/kg	0.5	<0.5	0	200	0
			2,3,4,6/2,3,5,6-tetrachlorophenol	mg/kg	1	<1	0	200	0
			Pentachlorophenol	mg/kg	0.5	<0.5	0	200	0
			2,4-dinitrophenol	mg/kg	2	<2	0	200	0
			4-chloro-3-methylphenol	mg/kg	2	<2	0	200	0
		Surrogates	2,4,6-Tribromophenol (Surrogate)	mg/kg	-	4.4	4.43	30	0
			d5-phenol (Surrogate)	mg/kg	-	1.8	1.61	30	11
									N040/A
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE145133.010	LB088227.014		Arsenic, As	mg/kg	3	5	5	51	4
JE 145 155.010	ED000227.014		Cadmium, Cd		0.3	0.3	0.3	118	1
				mg/kg					
			Chromium, Cr	mg/kg	0.3	19	18	33	2
			Copper, Cu	mg/kg	0.5	14	16	33	10
			Lead, Pb	mg/kg	1	15	15	37	4
			Nickel, Ni	mg/kg	0.5	15	15	33	1
			Zinc, Zn	mg/kg	0.5	120	120	32	3
SE145150.004	LB088227.024		Cadmium, Cd	mg/kg	0.3	0.258293502	90.3426953856	130	13
			Chromium, Cr	mg/kg	0.3	26.266223753	921.1552618514	32	22
			Copper, Cu	mg/kg	0.5	4.147858556	92.7285745693	45	41
			Lead, Pb	mg/kg	1	37.13872631	865.397924752	30	26
			Zinc, Zn	mg/kg	0.5	14.829731651	22.3640449752	45	18
RH (Total Recov									IENVIA
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Critoria %	RPD
-	LB088018.014					-	0		0
SE145133.011	LD000010.014		TRH C10-C14	mg/kg	20	<20		200	
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE145139.001	LB088018.023		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
							0	200	0
			TRH C10-C40 Total		210	<210		200	0
		TRH E Bands	TRH C10-C40 Total	mg/kg	210	<210		200	
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg mg/kg	25	<25	0	200	0
		TRH F Bands	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene	mg/kg mg/kg mg/kg	25 25	<25 <25	0	200	
		TRH F Bands	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg	25 25 90	<25 <25 <90	0 0 0	200 200	0
		TRH F Bands	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene	mg/kg mg/kg mg/kg	25 25	<25 <25	0 0 0 0	200 200 200	0
OC's in Soil		TRH F Bands	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg	25 25 90	<25 <25 <90	0 0 0 0	200 200	0
	Duplicate	TRH F Bands	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg	25 25 90	<25 <25 <90	0 0 0 0 Method: ME-	200 200 200	0
Driginal	Duplicate LB088081.026		TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg Units	25 25 90 120	<25 <25 <90 <120	0 0 0 0 Method: ME-	200 200 200 ·(AU)-[ENV]A	0 0 N433/A RPD
Driginal		Monocyclic	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg	25 25 90 120 LOR 0.1	<25 <25 <90 <120 Original <0.1	0 0 0 Method: ME- Duplicate 0.01	200 200 200 (AU)-[ENV]A Criteria % 200	0 0 N433/A RPD 0
Driginal			TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	25 25 90 120 LOR 0.1 0.1	<25 <25 <90 <120 Original <0.1 <0.1	0 0 0 Method: ME- Duplicate 0.01 0.01	200 200 (AU)-[ENV]A Criteria % 200 200	0 0 N433/A RPD 0 0
OC's in Soil Driginal SE145133.011		Monocyclic	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	25 25 90 120 LOR 0.1 0.1 0.1	<25 <25 <90 <120 Original <0.1 <0.1 <0.1	0 0 0 hlethod: ME- Duplicate 0.01 0.01	200 200 (AU)-[ENV]A Criteria % 200 200 200	0 0 N433/A RPD 0 0 0
Original		Monocyclic	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg	25 25 90 120 LOR 0.1 0.1 0.1 0.1 0.2	<25 <25 <90 <120 Original <0.1 <0.1 <0.1 <0.2	0 0 0 Method: ME- Duplicate 0.01 0.01 0 0	200 200 (AU)-[ENV]A Criteria % 200 200 200 200	0 0 N433/A RPD 0 0 0 0
Driginal		Monocyclic Aromatic	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	25 25 90 120 LOR 0.1 0.1 0.1 0.2 0.1	<25 <25 <90 <120 Original <0.1 <0.1 <0.1 <0.1 <0.2 <0.1	0 0 0 Method: ME- Duplicate 0.01 0.01 0 0	200 200 (AU)-[ENV]A Criteria % 200 200 200 200 200	0 0 N433/A RPD 0 0 0 0
Original		Monocyclic Aromatic Połycyclic	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	25 25 90 120 LOR 0.1 0.1 0.1 0.2 0.1 0.1	<25 <25 <90 <120 Original <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1	0 0 0 Method: ME- Duplicate 0.01 0.01 0 0 0 0	200 200 (AU)-[ENV]A Criteria % 200 200 200 200 200 200	0 0 N433/A RPD 0 0 0 0 0 0
Driginal		Monocyclic Aromatic	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3) TRH >C34-C40 (F4) Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	25 25 90 120 LOR 0.1 0.1 0.1 0.2 0.1	<25 <25 <90 <120 Original <0.1 <0.1 <0.1 <0.1 <0.2 <0.1	0 0 0 Method: ME- Duplicate 0.01 0.01 0 0	200 200 (AU)-[ENV]A Criteria % 200 200 200 200 200	0 0 N433/A RPD 0 0 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original Duplicate Original Duplicate Criteria % RPD % Parameter Units LOR LB088081.026 mg/kg SE145133.011 Surrogates Bromofluorobenzene (Surrogate) 4.8 4.22 50 12 Totals Total Xylenes* mg/kg 0.3 <0.3 0 200 0 0.6 <0.6 0.02 200 0 Total BTEX* mg/kg SE145164.004 LB088081.025 Monocyclic Benzene mg/kg 0.1 < 0.1 < 0.1 200 0 Aromatic Toluene 0.1 <0.1 <0.1 200 0 mg/kg Ethylbenzene 0.1 <0.1 <0.1 200 0 mg/kg 0.2 <0.2 <0.2 200 0 m/p-xylene mg/kg o-xylene 0.1 <0.1 <0.1 200 0 mg/kg <0.1 <0.1 Polycyclic Naphthalene 0.1 200 0 mg/kg Surrogates Dibromofluoromethane (Surrogate) mg/kg 3.8 4.1 50 7 d4-1,2-dichloroethane (Surrogate) 4.1 4.5 50 9 mg/kg d8-toluene (Surrogate) 3.9 4.2 50 8 mg/kg 4.5 Bromofluorobenzene (Surrogate) mg/kg 4.7 50 4 Totals Total Xylenes* 0.3 < 0.3 < 0.3 200 0 mg/kg Total BTEX* 0.6 <0.6 <0.6 200 0 mg/kg Original Duplicate Criter<u>ia % RPD %</u> Original Duplicate Parameter Units LOR SE145133.011 LB088081.026 TRH C6-C10 25 <25 3.49 200 0 mg/kg TRH C6-C9 20 <20 3.29 200 0 mg/kg Surrogates Dibromofluoromethane (Surrogate) mg/kg 3.9 4.52 30 14 d4-1,2-dichloroethane (Surrogate) 4.0 4.86 30 19 mg/kg 4.33 4.4 30 d8-toluene (Surrogate) 1 mg/kg Bromofluorobenzene (Surrogate) mg/kg 4.8 4.22 30 12 VPH F Bands 0.1 <0.1 0 200 0 Benzene (F0) mg/kg TRH C6-C10 minus BTEX (F1) 25 <25 3.48 200 0 mg/kg SE145164.004 LB088081.025 TRH C6-C10 mg/kg 25 <0 0 200 0 TRH C6-C9 20 <0 0 200 0 mg/kg 4.07 Surrogates Dibromofluoromethane (Surrogate) 3.8 30 7 mg/kg d4-1,2-dichloroethane (Surrogate) mg/kg 4.1 4.52 30 9 d8-toluene (Surrogate) 3.9 4.15 30 8 mg/kg Bromofluorobenzene (Surrogate) 4.7 4.54 30 4 mg/kg VPH F Bands Benzene (F0) mg/kg 0.1 <0 0 200 0 TRH C6-C10 minus BTEX (F1) mg/kg 25 <0 0 200 0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soll Method: ME-(AU)-[I Sample Number Parameter Units LOR Result Expected Criteria % Result								
Sample Number Parameter Units LOR Result Expected Criteria % Result								U)-[ENV]AN31
	ample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088240.002 Mercury mg/kg 0.01 0.20 0.2 70 - 130	0000040 000	Mercury	mg/kg	0.01	0.20	0.2	70 - 130	101

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B088018.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	96
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	98
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	93
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	93
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	99
_		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	91
S	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	95
							ME-(AU)-[ENV	/JAN400/AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B088018.002		Dichlorvos	mg/kg	0.5	1.5	2	60 - 140	74
		Diazinon (Dimpylate)	mg/kg	0.5	1.8	2	60 - 140	92
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	87
		Ethion	mg/kg	0.2	1.6	2	60 - 140	81
S	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
S	Surrogates	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg	-	0.4	0.5	40 - 130 40 - 130	80 94
AH (Polynuclear Aron		d14-p-terphenyl (Surrogate)				0.5		94
AH (Polynuclear Aron		d14-p-terphenyl (Surrogate)				0.5	40 - 130	94 U)-[ENV]AN
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Soil	mg/kg	-	0.5	0.5	40 - 130 Jethod: ME-(A	94 U)-[ENV]AN
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Soil Parameter	mg/kg Units	LOR	0.5 Result	0.5 îv Expected	40 - 130 Jethod: ME-(A Criteria %	94 U)-(ENV]AN Recovery
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene	mg/kg Units mg/kg	- LOR 0.1	0.5 Result 4.2	0.5 R Expected 4	40 - 130 Jelhod: ME-(A Criteria % 60 - 140	94 U)-[ENV]AN Recovery 105
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene	mg/kg Units mg/kg mg/kg	LOR 0.1 0.1	0.5 Result 4.2 4.2	0.5 Expected 4 4	40 - 130 lethod: ME-(A Criteria % 60 - 140 60 - 140	94 U)-[ENV]AN Recovery 105 104
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Sol Parameter Naphthalene Acenaphthylene Acenaphthene	mg/kg Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1	0.5 Result 4.2 4.2 4.2	0.5 R Expected 4 4 4 4	40 - 130 lethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	94 U}-[ENV]AN Recovery 105 104 104
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Sol Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1	0.5 Result 4.2 4.2 4.2 4.2 4.2	0.5 R Expected 4 4 4 4 4	40 - 130 lethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	94 U)-[ENV]AN Recovery 105 104 104 105
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Sol Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.2 4.2 4.2 4.2 4.2 4.5	0.5 R Expected 4 4 4 4 4 4 4 4	40 - 130 lethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	94 U)-[ENV]AN Recovery 105 104 104 105 112
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Filuoranthene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.2 4.2 4.2 4.2 4.2 4.5 4.5	0.5 R Expected 4 4 4 4 4 4 4 4 4	40 - 130 leihod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	94 U)-[ENV]AN Recovery 105 104 104 105 112 114
AH (Polynuclear Aron Sample Number .B088018.002		d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Fluoranthene Fluoranthene Pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.2 4.2 4.2 4.2 4.2 4.5 4.5 4.5 4.3	0.5 Expected 4 4 4 4 4 4 4 4 4	40 - 130 lethod: ME -(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	94 U)-[ENV]AN Recovery 105 104 104 105 112 114 107
AH (Polynuclear Aron Sample Number .B088018.002	omatic Hydroca	d14-p-terphenyl (Surrogate) rbons) in Sol Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Fluoranthene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.2 4.2 4.2 4.2 4.5 4.5 4.5 4.3 4.9	0.5 Expected 4 4 4 4 4 4 4 4 4 4 4	40 - 130 lethod: ME -(A Criteria % 60 - 140 60 - 140	94 U)-[ENV]AN Recovery 105 104 104 105 112 114 107 122
AH (Polynuclear Aron Sample Number .B088018.002	omatic Hydroca	d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.2 4.2 4.2 4.2 4.5 4.5 4.5 4.3 4.9 0.4	0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5	40 - 130 lethod: ME-(A Criteria % 60 - 140 60 - 130	94 U)-[ENV]AN Recovery 105 104 104 105 112 114 107 122 86
AH (Polynuclear Aron Sample Number LB088018.002	omatic Hydroca	d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	0.5 Result 4.2 4.2 4.2 4.5 4.5 4.5 4.3 4.9 0.4 0.4	0.5 Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	40 - 130 lethod: ME-(A Criteria % 60 - 140 60 - 130 40 - 130	94 U)-[ENV]AN Recovery 105 104 104 105 112 114 107 122 86 80 94
AH (Polynuclear Aron Sample Number LB088018.002	omatic Hydroca	d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	0.5 Result 4.2 4.2 4.2 4.5 4.5 4.5 4.3 4.9 0.4 0.4	0.5 Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	40 - 130 lethod: ME-(A Criteria % 60 - 140 60 - 130 40 - 130 40 - 130	94 U)-[ENV]AN Recovery 105 104 104 105 112 114 107 122 86 80 94

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography Method: ME-(AU)-(ENV						U)-[ENV]AN245	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088190.002	Chloride	mg/kg	0.25	NA	40	70 - 130	107
	Sulphate	mg/kg	0.5	NA	40	70 - 130	104

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088018.002		Phenol	mg/kg	0.5	0.8	1	70 - 130	80
		2,4-dichlorophenol	mg/kg	0.5	0.8	1	70 - 130	75
		2,4,6-trichlorophenol	mg/kg	0.5	0.9	1	70 - 130	90
		Pentachlorophenol	mg/kg	0.5	0.7	1	70 - 130	70
	Surrogates	2,4,6-Tribromophenol (Surrogate)	mg/kg	-	4.8	5	40 - 130	97
		d5-phenol (Surrogate)	mg/kg	-	1.6	2	40 - 130	81
								/JAN040/AN320
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088227.002		Arsenic, As	mg/kg	3	48	50	80 - 120	97
		Cadmium, Cd	mg/kg	0.3	51	50	80 - 120	101
		Chromium, Cr	mg/kg	0.3	50	50	80 - 120	100
		Copper, Cu	mg/kg	0.5	51	50	80 - 120	102

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

							ME-(AU)-[EN	VJAN040/AN321
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088227.002		Lead, Pb	mg/kg	1	50	50	80 - 120	99
		Nickel, Ni	mg/kg	0.5	50	50	80 - 120	99
		Zinc, Zn	mg/kg	0.5	51	50	80 - 120	102
TRH (Total Recove								U)-[ENV]AN40
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088018.002		TRH C10-C14	mg/kg	20	39	40	60 - 140	98
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	95
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	78
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	40	40	60 - 140	100
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	88
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	70
							ME-(AU)-[EN	VJAN433/AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088081.002	Monocyclic	Benzene	mg/kg	0.1	2.4	2.9	60 - 140	82
	Aromatic	Toluene	mg/kg	0.1	2.4	2.9	60 - 140	82
		Ethylbenzene	mg/kg	0.1	2.2	2.9	60 - 140	74
		m/p-xylene	mg/kg	0.2	4.5	5.8	60 - 140	77
		o-xylene	mg/kg	0.1	2.2	2.9	60 - 140	76
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.4	5	60 - 140	88
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.8	5	60 - 140	97
		d8-toluene (Surrogate)	mg/kg	-	4.6	5	60 - 140	92
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	5	60 - 140	89
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088081.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	85
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	71
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.4	5	60 - 140	88
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.8	5	60 - 140	97
		d8-toluene (Surrogate)	mg/kg	-	4.6	5	60 - 140	92
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	5	60 - 140	89
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	102

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil Method: ME-(AU)-[ENV]AN31								
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE145078.023	LB088240.004	Mercury	mg/kg	0.01	0.20	0.05196198402	0.2	72

OC Pesticides in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery
E145133.003	LB088018.004		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	<0.1	0.2	90
			Aldrin	mg/kg	0.1	<0.1	0.2	95
			Beta BHC	mg/kg	0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	<0.1	0.2	89
			Heptachlor epoxide	mg/kg	0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	0.2	92
			Endrin	mg/kg	0.2	<0.2	0.2	96
			o,p'-DDD	mg/kg	0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	<0.1	0.2	76
			Endosulfan sulphate	mg/kg	0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	-	95

OP Pesticides in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE145133.003	LB088018.004		Dichlorvos	mg/kg	0.5	<0.5	2	110
			Dimethoate	mg/kg	0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	93
			Fenitrothion	mg/kg	0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	96
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	-	-
			Ethion	mg/kg	0.2	<0.2	2	91
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	82
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	96

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE145133.003	LB088018.004	Naphthalene	mg/kg	0.1	<0.1	4	107
		2-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	<0.1	4	106
		Acenaphthene	mg/kg	0.1	<0.1	4	103
		Fluorene	mg/kg	0.1	<0.1	-	-
		Phenanthrene	mg/kg	0.1	<0.1	4	100
		Anthracene	mg/kg	0.1	<0.1	4	106
		Fluoranthene	mg/kg	0.1	<0.1	4	112

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter Units LOR Original Spike Recovery% SE145133.003 LB088018.004 Pyrene mg/kg 0.1 <0.1</td> 4 105

Cadmium, Cd

45133.003 LB088018.004	LB088018.004		Pyrene	mg/kg	0.1	<0.1	4	105
			Benzo(a)anthracene	mg/kg	0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	<0.1	4	115
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=0*<>	TEQ	0.2	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-
			Total PAH	mg/kg	0.8	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	-	86
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	82
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	96

PCBs in Soil

SE145098.003

QC Sample	Sample Number		Parameter		Units	LOR	Original	Spike	Recovery%	
SE145133.003	LB088018.004		Arochlor 1016	1	mg/kg	0.2	<0.2	-	-	
			Arochlor 1221	1	mg/kg	0.2	<0.2	-	-	
			Arochlor 1232		mg/kg	0.2	<0.2	-	-	
			Arochlor 1242		mg/kg	0.2	<0.2	-	-	
			Arochlor 1248		mg/kg	0.2	<0.2	-	-	
			Arochlor 1254		mg/kg	0.2	<0.2	-	-	
			Arochlor 1260		mg/kg	0.2	<0.2	0.4	92	
			Arochlor 1262	1	mg/kg	0.2	<0.2	-	-	
			Arochlor 1268	1	mg/kg	0.2	<0.2	-	-	
			Total PCBs (Arochlors)	1	mg/kg	1	<1	-	-	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)		mg/kg	-	0	-	97	
									IE-(AU)-[ENV]A	N040/AN320
QC Sample	Sample Number		Parameter		Units	LOR	Result	Original	Spike	Recovery%

TRH (Total Recoverable Hydrocarbons) in Soil

LB088227.004

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE145133.003	LB088018.004		TRH C10-C14	mg/kg	20	<20	40	108
			TRH C15-C28	mg/kg	45	<45	40	108
			TRH C29-C36	mg/kg	45	<45	40	78
			TRH C37-C40	mg/kg	100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	-	-
			TRH C10-C40 Total	mg/kg	210	<210	-	-
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	40	108
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	40	98
			TRH >C34-C40 (F4)	mg/kg	120	<120	-	-

VOC's in Soil

QC Sample	Sample Numbe	ər	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE145133.003	LB088081.004	Monocyclic	Benzene	mg/kg	0.1	1.9	<0.1	2.9	67
		Aromatic	Toluene	mg/kg	0.1	2.1	<0.1	2.9	71
			Ethylbenzene	mg/kg	0.1	2.0	<0.1	2.9	69
			m/p-xylene	mg/kg	0.2	4.4	<0.2	5.8	75
			o-xylene	mg/kg	0.1	2.1	<0.1	2.9	73
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.5	3.8	-	91
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	4.0	-	92
			d8-toluene (Surrogate)	mg/kg	-	5.4	4.5	-	108
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.9	4.7	-	117

48

0.3

mg/kg

0.78540879729

50

94

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

								(AU)-[ENV	JAN433/AN434
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE145133.003	LB088081.004	Totals	Total Xylenes*	mg/kg	0.3	6.5	<0.3	-	-
			Total BTEX*	mg/kg	0.6	12	<0.6	-	-
								ENVJAN433	/AN434/AN410
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE145133.003	LB088081.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	82
			TRH C6-C9	mg/kg	20	<20	<20	23.2	77
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.5	3.8	-	91
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	4.0	-	92
			d8-toluene (Surrogate)	mg/kg	-	5.4	4.5	-	108
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.9	4.7	-	117
		VPH F	Benzene (F0)	mg/kg	0.1	1.9	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	107

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/ Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS 136251 **Client: Cardno Geotech Solutions** PO Box 4224 Edgeworth NSW 2285 Attention: Alireza Mohiti Sample log in details: Your Reference: 80514013 No. of samples: 1 soil Date samples received / completed instructions received 22/10/15 1 22/10/15 **Analysis Details:** Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. **Please refer to the last page of this report for any comments relating to the results.**

Report Details:

Date results requested by: / Issue Date:29/10/15/27/10/15Date of Preliminary Report:Not IssuedNATA accreditation number 2901. This document shall not be reproduced except in full.Accredited for compliance with ISO/IEC 17025.Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	24/10/2015
TRHC6 - C9	mg/kg	<25
TRHC 6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	104

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	23/10/2015
TRHC 10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	86

PAHs in Soil		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	24/10/2015
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE
Surrogate p-Terphenyl-d14	%	94

Organochlorine Pesticides in soil		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	24/10/2015
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCMX	%	110

Organophosphorus Pesticides		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	24/10/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Ethion	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Surrogate TCMX	%	110

PCBs in Soil		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	24/10/2015
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Surrogate TCLMX	%	110

Acid Extractable metals in soil		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date prepared	-	23/10/2015
Date analysed	-	26/10/2015
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	5
Copper	mg/kg	1
Lead	mg/kg	4
Mercury	mg/kg	<0.1
Nickel	mg/kg	<1
Zinc	mg/kg	42

Moisture		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date prepared	-	23/10/2015
Date analysed	-	26/10/2015
Moisture	%	9.1
Client Reference: 80514013

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" are="" at="" is="" pql.="" the="" the<br="" this="">most conservative approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.</pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
vTRH(C6-C10)/BTEXNin Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			23/10/2	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	-			015 24/10/2 015	[NT]	[NT]	LCS-3	24/10/2015
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	110%
TRHC 6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	110%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-3	116%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-3	107%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	108%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-3	110%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	112%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa-	туку %		Org-014 Org-016	115	[NT]	[NT]	LCS-3	113%
Trifluorotoluene	70		Olg-010	115	[N]	[141]	203-3	11370
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			23/10/2 015	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	-			23/10/2 015	[NT]	[NT]	LCS-3	23/10/201
TRHC 10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	107%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	99%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	93%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	107%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	99%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	93%
Surrogate o-Terphenyl	%	100	Org-003	91	[NT]	[NT]	LCS-3	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil				Didi ik	Sm#	Base II Duplicate II % RPD	opike on#	Recovery
Date extracted	_			23/10/2	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	_			015	[NT]	[NT]	LCS-3	24/10/2015
· · · · · · · · · · · · · · · · · · ·				015				
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	96%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	109%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	98%
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	97%
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	103%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	123%
Benzo(b,j+k) fluoranthene	mg/kg	0.1	Org-012 Org-012	<0.1	[NT]	[NT]	[NR]	[NR]

		Clie	nt Reference	e: 80	0514013	-		-
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]	[NT]	LCS-3	111%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	92	[NT]	[TN]	LCS-3	97%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II % RPD		
Date extracted	-			23/10/2 015	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	-			24/10/2 015	[NT]	[NT]	LCS-3	24/10/2015
HCB	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	92%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	89%
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	96%
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	94%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	95%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	87%
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	98%
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	98%
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	91%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	97%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-005	110	[NT]	[NT]	LCS-3	128%

		Clie	ent Referenc	e: 80	0514013			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted			23/10/2 015	[NT]	[NT]	LCS-3	23/10/2015	
Date analysed	-			24/10/2 015	[NT]	[NT]	LCS-3	24/10/2015
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	100%
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	99%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	117%
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	104%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	119%
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	110%
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	74%
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-008	110	[NT]	[NT]	LCS-3	128%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			23/10/2 015	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	-			24/10/2 015	[NT]	[NT]	LCS-3	24/10/2015
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-3	114%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	110	[NT]	[NT]	LCS-3	112%

Client Reference: 80514013								
QUALITY CONTROL Acid Extractable metals	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
in soil								
Date prepared	-			23/10/2 015	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	-			26/10/2 015	[NT]	[NT]	LCS-3	26/10/2015
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-3	113%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-3	107%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	107%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	107%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	108%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-3	119%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	105%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	107%

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Cardno (NSW/ACT) Pty Ltd Level 9, 203 Pacific Highway St Leonards NSW 2065

NATA

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Kosta Sykiotis

832389-S

80519020

80519020

Oct 15, 2021

Report Project name Project ID Received Date

Client Sample ID			ES1	ES2	ES3	DUP1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-Oc31203	N21-Oc31204	N21-Oc31205	N21-Oc31206
Date Sampled			Oct 14, 2021	Oct 14, 2021	Oct 14, 2021	Oct 14, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	_	01110				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	65	71	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	65	71	< 50	< 50
BTEX	h					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	86	88	93	89
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

LOR 0.5 0.5 0.5 1 1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Unit mg/kg mg/kg mg/kg % % % mg/kg mg/kg mg/kg mg/kg	ES1 Soil N21-Oc31203 Oct 14, 2021 < 0.5 < 0.5 < 0.5 < 0.5 143 133 < 0.1 < 0.05 < 0.05 < 0.05	ES2 Soil N21-Oc31204 Oct 14, 2021 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.1 < 0.05 < 0.05	ES3 Soil N21-Oc31205 Oct 14, 2021 < 0.5< 0.5< 0.5< 0.5140141< 0.1< 0.05< 0.05	DUP1 Soil N21-Oc31206 Oct 14, 2021 < 0.5< 0.5< 0.5< 0.5135120< 0.1< 0.05
0.5 0.5 0.5 1 1 0.1 0.05 0.05 0.05 0.05	mg/kg mg/kg mg/kg mg/kg % mg/kg mg/kg mg/kg mg/kg	N21-Oc31203 Oct 14, 2021 < 0.5 < 0.5 < 0.5 < 0.5 143 133	N21-Oc31204 Oct 14, 2021 < 0.5 < 0.5 < 0.5 < 0.5 146 137 < 0.1 < 0.05	N21-Oc31205 Oct 14, 2021 < 0.5 < 0.5 < 0.5 < 0.5 140 141 < 0.1 < 0.05	N21-Oc31206 Oct 14, 2021 < 0.5 < 0.5 < 0.5 < 0.5 135 120 < 0.1 < 0.05
0.5 0.5 0.5 1 1 0.1 0.05 0.05 0.05 0.05	mg/kg mg/kg mg/kg mg/kg % mg/kg mg/kg mg/kg mg/kg	Oct 14, 2021 < 0.5 < 0.5 < 0.5 < 143 133 < 0.1 < 0.05 < 0.05 	Oct 14, 2021 < 0.5 < 0.5 < 0.5 < 0.5 146 137 < 0.1 < 0.05	Oct 14, 2021 < 0.5 < 0.5 < 0.5 < 0.5 < 140 141 < 0.1 < 0.05	Oct 14, 2021 < 0.5 < 0.5 < 0.5 < 0.5 135 120 < 0.1 < 0.05
0.5 0.5 0.5 1 1 0.1 0.05 0.05 0.05 0.05	mg/kg mg/kg mg/kg mg/kg % mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 143 133 < 0.1 < 0.05 < 0.05	< 0.5 < 0.5 < 0.5 < 0.5 146 137 < 0.1 < 0.05	<0.5 <0.5 <0.5 <0.5 140 141 <0.1 <0.05	 < 0.5 < 0.5 < 0.5 < 0.5 135 120 < 0.1 < 0.05
0.5 0.5 0.5 1 1 0.1 0.05 0.05 0.05 0.05	mg/kg mg/kg mg/kg mg/kg % mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 143 133 < 0.1 < 0.05 < 0.05	< 0.5 < 0.5 < 0.5 146 137 < 0.1 < 0.05	< 0.5 < 0.5 < 0.5 140 141 < 0.1 < 0.05	< 0.5 < 0.5 < 0.5 135 120 < 0.1 < 0.05
0.5 0.5 1 1 0.1 0.05 0.05 0.05 0.05 0.05	mg/kg mg/kg % % mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 143 133 < 0.1 < 0.05 < 0.05	< 0.5 < 0.5 < 0.5 146 137 < 0.1 < 0.05	< 0.5 < 0.5 < 0.5 140 141 < 0.1 < 0.05	< 0.5 < 0.5 < 0.5 135 120 < 0.1 < 0.05
0.5 0.5 1 1 0.1 0.05 0.05 0.05 0.05 0.05	mg/kg mg/kg % % mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 143 133 < 0.1 < 0.05 < 0.05	< 0.5 < 0.5 < 0.5 146 137 < 0.1 < 0.05	< 0.5 < 0.5 < 0.5 140 141 < 0.1 < 0.05	< 0.5 < 0.5 < 0.5 135 120 < 0.1 < 0.05
0.5 0.5 1 1 0.1 0.05 0.05 0.05 0.05 0.05	mg/kg mg/kg % mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 143 133 < 0.1 < 0.05 < 0.05	< 0.5 < 0.5 146 137 < 0.1 < 0.05	< 0.5 < 0.5 140 141 < 0.1 < 0.05	< 0.5 < 0.5 135 120 < 0.1 < 0.05
0.5 1 0.1 0.05 0.05 0.05 0.05 0.05 0.05	mg/kg % % mg/kg mg/kg mg/kg mg/kg	< 0.5 143 133 < 0.1 < 0.05 < 0.05	< 0.5 146 137 < 0.1 < 0.05	< 0.5 140 141 < 0.1 < 0.05	< 0.5 135 120 < 0.1 < 0.05
1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05	% % mg/kg mg/kg mg/kg mg/kg	143 133 < 0.1 < 0.05 < 0.05	146 137 < 0.1 < 0.05	140 141 < 0.1 < 0.05	135 120 < 0.1 < 0.05
1 0.1 0.05 0.05 0.05 0.05 0.05 0.05	% mg/kg mg/kg mg/kg mg/kg	133 < 0.1 < 0.05 < 0.05	137 < 0.1 < 0.05	141 < 0.1 < 0.05	120 < 0.1 < 0.05
0.1 0.05 0.05 0.05 0.05 0.05 0.05	mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.05 < 0.05	< 0.1 < 0.05	< 0.1 < 0.05	< 0.1 < 0.05
0.05 0.05 0.05 0.05 0.05 0.05	mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
0.05 0.05 0.05 0.05 0.05 0.05	mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
0.05 0.05 0.05 0.05 0.05	mg/kg mg/kg mg/kg	< 0.05			
0.05 0.05 0.05 0.05	mg/kg mg/kg		< 0.05	< 0.05	
0.05 0.05 0.05	mg/kg	< 0.05			< 0.05
0.05 0.05			< 0.05	< 0.05	< 0.05
0.05	···· //	< 0.05	< 0.05	< 0.05	< 0.05
	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	0.07	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	mg/kg				< 0.05
	mg/kg				< 0.5
0.05	mg/kg				< 0.05
					< 0.05
					< 0.1
					< 0.1
					134
1	%	72	81	126	126
	1				
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.05 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.2 mg/kg	0.05 mg/kg < 0.05 0.05 mg/kg < 0.05	0.05 mg/kg < 0.05 < 0.05 0.05 mg/kg < 0.05	0.05 mg/kg < 0.05 < 0.05 < 0.05 < 0.05 0.05 mg/kg < 0.05

Client Sample ID			ES1	ES2	ES3	DUP1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-Oc31203	N21-Oc31204	N21-Oc31205	N21-Oc31206
•						
Date Sampled			Oct 14, 2021	Oct 14, 2021	Oct 14, 2021	Oct 14, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	75	73	79	109
Polychlorinated Biphenyls	i i	·				
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	103	96	114	134
Tetrachloro-m-xylene (surr.)	1	%	72	81	126	126
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
	100	iiig/itg		< 100		< 100
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	62	65	45	48
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units		6.3	7.3	7.0
% Moisture	1	PH Units	15	13	14	16
		70	10	13	14	10
Heavy Metals	2	m m/l	E E	A E		2.0
Arsenic	2	mg/kg	5.5	4.5	< 2	3.9
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	22	13	6.8	12
Copper	5	mg/kg	22	16	< 5	5.7
Lead	5	mg/kg	23	13	7.4	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	26	7.2	< 5	< 5
Zinc	5	mg/kg	110	57	38	29

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Oct 21, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Oct 21, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 21, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Oct 21, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 21, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Oct 21, 2021	7 Days
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Oct 21, 2021	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Metals M8	Melbourne	Oct 21, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Melbourne	Oct 21, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Organophosphorus Pesticides	Melbourne	Oct 21, 2021	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS (USEPA 8270)			
Polychlorinated Biphenyls	Melbourne	Oct 21, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8082)			
% Moisture	Melbourne	Oct 15, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

eurofins ABN: 50 005 085 521						ent Te	sting	Austra	Ltd		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
web: w	Environment Testing 6 Monterey Road Dandenong South Phone : +61 3 856					Unit F3, Building F 3175 16 Mars Road 000 Lane Cove West NSW 2066			PO Box 60 Wickham 2293	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290		
	ompany Name: Idress:	Cardno (NSV Level 9, 203 St Leonards NSW 2065					R P	rder I eport hone: ax:	832389 0294967700 02 9499 3902		Received: Due: Priority: Contact Name:	Oct 15, 2021 8:30 / Oct 22, 2021 5 Day Kosta Sykiotis	AM	
	oject Name: oject ID:	80519020 80519020									Eurofins Analytical	Services Manager · I	Irsula Long	
		Sa	mple Detail			Eurofins Suite B15	Moisture Set	ENM Exemption Suite -The excavated natural material order 2014 NSW						
Mell	oourne Laborato	ry - NATA # 12	61 Site # 125	4		Х	Х	х						
	ney Laboratory -													
Bris	bane Laboratory	• - NATA # 1261	Site # 2079	4										
	field Laboratory													
Perth Laboratory - NATA # 2377 Site # 2370														
	ernal Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	ES1	Oct 14, 2021		Soil	N21-Oc31203	Х	Х	х						
2	ES2	Oct 14, 2021		Soil	N21-Oc31204	Х	Х	Х						
3		Oct 14, 2021		Soil	N21-Oc31205	Х	Х	Х						
4	DUP1	Oct 14, 2021		Soil	N21-Oc31206	Х	Х	Х						
Test	Counts					4	4	4						

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

onits		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terma	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs..

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xvlenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank					1	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene		< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
	mg/kg	1		1		
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene Mathematical Blank	mg/kg	< 0.5		0.5	Pass	
Method Blank					1	
Organochlorine Pesticides		.0.1		0.4	Daaa	
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	<u> </u>	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	<u> </u>	0.05	Pass	
a-HCH	mg/kg	< 0.05	<u> </u>	0.05	Pass	
Aldrin	mg/kg	< 0.05	<u> </u>	0.05	Pass	
b-HCH	mg/kg	< 0.05	<u>├</u> ───	0.05	Pass	
d-HCH	mg/kg	< 0.05	<u> </u>	0.05	Pass	
Dieldrin	mg/kg	< 0.05	├ ───	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	├ ───	0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	e Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank		· · · · ·	· · · ·		
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc		< 5	5	Pass	
	mg/kg	< 5	5	F d 55	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	0/	04			
TRH C6-C9	%	84	70-130	Pass	
TRH C10-C14	%	125	70-130	Pass	
LCS - % Recovery		1 1		1	
BTEX	-				
Benzene	%	90	70-130	Pass	
Toluene	%	96	70-130	Pass	
Ethylbenzene	%	77	70-130	Pass	
m&p-Xylenes	%	75	70-130	Pass	
Xylenes - Total*	%	75	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	96	70-130	Pass	
TRH C6-C10	%	91	70-130	Pass	
LCS - % Recovery				1	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	102	70-130	Pass	
Acenaphthylene	%	111	70-130	Pass	
Anthracene	%	111	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	93	70-130	Pass	
Benzo(b&j)fluoranthene	%	115	70-130	Pass	
Benzo(g.h.i)perylene	%	93	70-130	Pass	
Benzo(k)fluoranthene	%	120	70-130	Pass	
Chrysene	%	102	70-130	Pass	
Dibenz(a.h)anthracene	%	104	70-130	Pass	
Fluoranthene	%	103	70-130	Pass	
Fluorene	%	121	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	99	70-130	Pass	
Naphthalene	%	122	70-130	Pass	
Phenanthrene	%	106	70-130	Pass	
Pyrene	%	107	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	95	70-130	Pass	
4.4'-DDD	%	124	70-130	Pass	
4.4'-DDE	%	101	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDT			%	82		70-130	Pass	
a-HCH			%	98		70-130	Pass	
Aldrin			%	96		70-130	Pass	
b-HCH			%	87		70-130	Pass	
d-HCH			%	97		70-130	Pass	
Dieldrin			%	74		70-130	Pass	
Endosulfan I			%	99		70-130	Pass	
Endosulfan II			%	99		70-130	Pass	
Endosulfan sulphate			%	88		70-130	Pass	
Endrin			%	96		70-130	Pass	
Endrin aldehyde			%	88		70-130	Pass	
Endrin ketone			%	89		70-130	Pass	
g-HCH (Lindane)			%	101		70-130	Pass	
Heptachlor			%	74		70-130	Pass	
Heptachlor epoxide			%	88		70-130	Pass	
Hexachlorobenzene			%	72		70-130	Pass	
Methoxychlor			%	87		70-130	Pass	
LCS - % Recovery			,,,		<u> </u>			
Organophosphorus Pesticides								
Diazinon			%	115		70-130	Pass	
Dimethoate			%	103		70-130	Pass	
Ethion			%	99		70-130	Pass	
Fenitrothion			%	95		70-130	Pass	
Methyl parathion			%	103		70-130	Pass	
Mevinphos			%	114		70-130	Pass	
LCS - % Recovery			/0	114		70-130	F 855	
Polychlorinated Biphenyls								
Aroclor-1260			%	78		70-130	Pass	
LCS - % Recovery			/0	70		70-130	F 855	
Total Recoverable Hydrocarbons -	2012 NEPM Eract	ions						
TRH >C10-C16		10115	%	128		70-130	Pass	
LCS - % Recovery			/0	120		70-130	F 855	
Heavy Metals Arsenic			%	94		80-120	Deee	
			%	94			Pass Pass	
Cadmium						80-120		
Chromium			%	98		80-120	Pass	
Copper			%	96		80-120	Pass	
Lead			%	96		80-120	Pass	
Mercury			%	96		80-120	Pass	
Nickel			%	96 96		80-120	Pass	
Zinc		0 4	%	96		80-120	Pass	Ovelifying
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					· · · · ·			
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	N21-Oc28498	NCP	%	77		70-130	Pass	
TRH C10-C14	L21-Oc36851	NCP	%	111		70-130	Pass	
Spike - % Recovery				· ·				
BTEX				Result 1				
Benzene	N21-Oc28498	NCP	%	76		70-130	Pass	
Toluene	N21-Oc28498	NCP	%	91		70-130	Pass	
	N21-Oc28498	NCP	%	83		70-130	Pass	
Ethylbenzene					1 1			l
Ethylbenzene m&p-Xylenes				80		70-130	Pass	
Ethylbenzene m&p-Xylenes o-Xylene	N21-Oc28498 N21-Oc28498	NCP NCP	%	80 86		70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Accepta Limit	ance Pass ts Limits	Qualifying Code
Spike - % Recovery		I I					
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	tions		Result 1			
Naphthalene	N21-Oc28498	NCP	%	94	70-13	30 Pass	
TRH C6-C10	N21-Oc28498	NCP	%	84	70-13	30 Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbo	ns			Result 1			
Acenaphthene	M21-Oc37953	NCP	%	92	70-13	30 Pass	
Acenaphthylene	M21-Oc37953	NCP	%	108	70-13	30 Pass	
Anthracene	M21-Oc37953	NCP	%	116	70-13	30 Pass	
Benz(a)anthracene	M21-Oc37953	NCP	%	74	70-13	30 Pass	
Benzo(a)pyrene	M21-Oc37953	NCP	%	115	70-13	30 Pass	
Benzo(b&j)fluoranthene	M21-Oc37953	NCP	%	93	70-13	30 Pass	
Benzo(g.h.i)perylene	M21-Oc37953	NCP	%	91	70-13	30 Pass	
Benzo(k)fluoranthene	M21-Oc37953	NCP	%	91	70-13	30 Pass	
Chrysene	M21-Oc37953	NCP	%	91	70-13	30 Pass	
Dibenz(a.h)anthracene	M21-Oc37953	NCP	%	88	70-13	30 Pass	
Fluoranthene	M21-Oc37953	NCP	%	94	70-13	30 Pass	
Fluorene	M21-Oc37953	NCP	%	126	70-13	30 Pass	
Indeno(1.2.3-cd)pyrene	M21-Oc37953	NCP	%	102	70-13	30 Pass	
Naphthalene	M21-Oc37953	NCP	%	126	70-13	30 Pass	
Phenanthrene	M21-Oc37953	NCP	%	86	70-13	30 Pass	
Pyrene	M21-Oc37953	NCP	%	99	70-13	30 Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	B21-Oc31708	NCP	%	97	70-13	30 Pass	
4.4'-DDD	B21-Oc31708	NCP	%	112	70-13	30 Pass	
4.4'-DDE	B21-Oc31708	NCP	%	106	70-13	30 Pass	
4.4'-DDT	B21-Oc31708	NCP	%	86	70-13	30 Pass	
a-HCH	B21-Oc31708	NCP	%	104	70-13	30 Pass	
Aldrin	B21-Oc31708	NCP	%	86	70-13	30 Pass	
b-HCH	B21-Oc31708	NCP	%	82	70-13	30 Pass	
d-HCH	B21-Oc31708	NCP	%	86	70-13	30 Pass	
Dieldrin	B21-Oc31708	NCP	%	75	70-13	30 Pass	
Endosulfan I	B21-Oc31708	NCP	%	121	70-13	30 Pass	
Endosulfan II	B21-Oc31708	NCP	%	97	70-13	30 Pass	
Endosulfan sulphate	B21-Oc31708	NCP	%	104	70-13	30 Pass	
Endrin	B21-Oc31708	NCP	%	73	70-13	30 Pass	
Endrin aldehyde	B21-Oc31708	NCP	%	75	70-13	30 Pass	
Endrin ketone	B21-Oc31708	NCP	%	106	70-13	30 Pass	
g-HCH (Lindane)	B21-Oc31708	NCP	%	79	70-13	30 Pass	
Heptachlor	B21-Oc31708	NCP	%	104	70-13	30 Pass	
Heptachlor epoxide	B21-Oc31708	NCP	%	82	70-13	30 Pass	
Hexachlorobenzene	B21-Oc31708	NCP	%	86	70-13	30 Pass	
Methoxychlor	B21-Oc31708	NCP	%	80	70-13	30 Pass	
Spike - % Recovery							
Organophosphorus Pesticides				Result 1			
Diazinon	B21-Oc31708	NCP	%	93	70-13	30 Pass	
Dimethoate	B21-Oc31708	NCP	%	96	70-13		
Ethion	B21-Oc31708	NCP	%	120	70-13		
Fenitrothion	B21-Oc31708	NCP	%	101	70-13		
Methyl parathion	B21-Oc31708	NCP	%	87	70-13		1
Mevinphos	B21-Oc31708	NCP	%	109	70-13		1
Spike - % Recovery							
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	tions		Result 1			1

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
TRH >C10-C16	L21-Oc36851	NCP	%	113			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M21-Oc45271	NCP	%	100			75-125	Pass	
Cadmium	M21-Oc45271	NCP	%	99			75-125	Pass	
Chromium	M21-Oc45271	NCP	%	106			75-125	Pass	
Copper	M21-Oc45271	NCP	%	106			75-125	Pass	
Lead	M21-Oc45271	NCP	%	108			75-125	Pass	
Mercury	M21-Oc45271	NCP	%	110			75-125	Pass	
Nickel	M21-Oc45271	NCP	%	104			75-125	Pass	
Zinc	M21-Oc45271	NCP	%	107			75-125	Pass	
		QA						Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Acceptance Limits	Limits	Code
Duplicate				1	1		l		
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	M21-Oc40371	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	L21-Oc36850	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	L21-Oc36850	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	L21-Oc36850	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate			00				-		
BTEX				Result 1	Result 2	RPD			
Benzene	M21-Oc40371	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M21-Oc40371	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M21-Oc40371	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M21-Oc40371	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M21-Oc40371	NCP	mg/kg	< 0.1	< 0.2	<1	30%	Pass	
Xylenes - Total*	M21-Oc40371	NCP	mg/kg	< 0.1	< 0.3	<1	30%	Pass	
Duplicate	10121-0040371	INCE	nig/kg	< 0.5	< 0.5	<1	30 %	газэ	
	no 2012 NEDM Front	lene		Deput 1	Result 2	RPD		1	
Total Recoverable Hydrocarbo				Result 1			200/	Deee	
Naphthalene	M21-Oc40371	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M21-Oc40371	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate					D 110			1	
Polycyclic Aromatic Hydrocart				Result 1	Result 2	RPD		_	
Acenaphthene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M21-Oc37702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate			.99						
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M21-Oc37702	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M21-Oc37702	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M21-Oc37702	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
				1					
4.4'-DDT	M21-Oc37702	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

			Result 1	Result 2	RPD			
M21-Oc37702	NCP	ma/ka		< 0.05	<1	30%	Pass	
M21-Oc37702	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
M21-Oc37702	NCP				<1	30%		
	NCP				<1	30%		
	NCP				<1	30%		
M21-Oc37702	NCP				<1	30%		
	NCP				<1	30%		
	NCP				<1	30%		
	NCP				<1	30%		
	NCP				<1	30%		
			Result 1	Result 2	RPD			
M21-Oc37702	NCP	ma/ka				30%	Pass	
							1 1	
		00						
							1 1	
		00						
		00						
		00						
		00						
							1 1	
M21-Oc37702 M21-Oc37702	NCP	mg/kg	< 0.2	< 0.2	<1	<u> </u>	Pass	
			I NU.2	_ <u>\</u> U.∠	N	30 /0	1 1 0 2 2	
M21-Oc37702	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
	M21-Oc37702 M21-Oc3	M21-Oc37702 NCP M21-Oc37702	M21-Oc37702 NCP mg/kg M21-Oc37702 NCP mg/kg	M21-0c37702 NCP mg/kg < 0.05 M21-0c37702 NCP mg/kg < 0.05	M21-Qc37702 NCP mg/kg < 0.05 < 0.05 M21-Qc37702 NCP mg/kg < 0.05	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M21-0c37702 NCP mg/kg < 0.05 < 1 30% Pass M21-0c37702 NCP mg/kg < 0.05

Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	M21-Oc37702	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M21-Oc37702	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M21-Oc37702	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M21-Oc37702	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M21-Oc37702	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M21-Oc37702	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	M21-Oc37702	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	M21-Oc37702	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	L21-Oc36850	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	L21-Oc36850	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	L21-Oc36850	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	N21-Oc31203	СР	uS/cm	62	69	10	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	N21-Oc31203	СР	pH Units	7.4	7.3	pass	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M21-Oc45270	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M21-Oc45270	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M21-Oc45270	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	M21-Oc45270	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	M21-Oc45270	NCP	mg/kg	6.9	6.9	<1	30%	Pass	
Mercury	M21-Oc45270	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M21-Oc45270	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	M21-Oc45270	NCP	mg/kg	15	15	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	N21-Oc31204	CP	%	13	12	7.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

0000	
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX

Not analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. Please note: These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

Ursula Long Emily Rosenberg Joseph Edouard Scott Beddoes Vivian Wang

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Analytical Services Manager

Senior Analyst-Organic (VIC)

Senior Analyst-Inorganic (VIC)

Senior Analyst-Volatile (VIC)

Senior Analyst-Metal (VIC)

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

APPENDIX

PHOTOGRAPHS

Cardno

Photograph 1: Fill Stockpile (see OIN 1 on Figure 2 in Appendix A).

Photograph 2: Large Fill Stockpile (see OIN 2 on Figure 2 in Appendix A).

Photograph 3: Abandoned Residential Dwelling (see OIN 4 on Figure 2 in Appendix A).

Photograph 4: Scattered Fibrous Material (see OIN 5 on Figure 2 in Appendix A).

Photograph 5: Stockpile Covered with Vegetation (see OIN 6 on Figure 2 in Appendix A).

Photograph 6: Household Refuse and Garden Waster (see OIN 9 on Figure 2 in Appendix A).

Photograph 7: Recent Stockpile Dumping (see OIN 10 on Figure 2 in Appendix A).

Photograph 8: Recent Stockpile Dumping (see OIN 10 on Figure 2 in Appendix A).

Photograph 9: Recent Sandstone Log Dumping (see OIN 10 on Figure 2 in Appendix A).